Объяснение:
1/a) 6x-14-5x<=3x-12, x-3x<=14-12, -2x<=2, x>=-1
б) умножаем все на 8, 8x-2(x-3)+x-1 >16, 8x-2x+6+x-1>16,
7x>16-5, 7x>11, x>11/7
2) -2x-3x>-3-12, -5x>-15, x<3 u 7x-4x<=6+12, 3x<=18, x<=6,
ответ : (-Б; 3) Б -бесконечность
3a) x=12 или х=-12, б) 2х+3=7, 2х=4, х=2 или 2х+3= -7, 2х=-10, х=-5
в) 1-3х=37, -3х=36, х=-12 или 1-3х=-37, -3х=-38, х= 38/3=12 2/3
4a) здесь надо решить систему: 4x-1<9 и 4x-1> -9,
4x<10, x<10/4, x<2,5 и 4x>-8, x>-2, ответ: (-2; 2,5)
ЗАДАЧА 1
1) Проведем высоту BD к стороне D, такую, что АD = 16 и DC = 14
2) Найдем сторону АС. АС = AD + DC = 14+16 = 30
3) Найдем сторону BC. По теореме Пифагора: BC^2 = BD^2 + DC^2 = 8^2 + 14^2 = 64 + 196 = 260. Значит BC = √260
4) Найдем сторону AB. По теореме Пифагора: AB^2 = AD^2 + BD^2 = 16^2 + 8^2 = 256 + 64 = 320. Значит AB = √320
ЗАДАЧА 2
1) Найдем площадь треугольника BCH. (2*7)/2 = 7
2) Проведем высоту DL к стороне AB. Треугольники DLA и BCH равны, следовательно и их площади равны, следовательно сумма их площадей равна 7*2 = 14.
3) Найдем площадь четырехугольника LBHD. (18-7)*2 = 22
4) Найдем площадь всего параллелограмма. 14+22 = 36
ЗАДАЧА 3
1) Проведем высоты BL и CH к основанию AD. Рассмотрим треугольник СDH. ∠СHD = 90° (так как CH - высота) и ∠СDH = 45° (по условию). Значит ∠DCH = 45°. В треугольнике два угла равны, значит он равнобедренный. Значит CH = HD.
2) Найдем BC. BC = AD - 2HD (AL = HD) = 98 - 2*14 = 70
3) Найдем площадь четырехугольника BCHL. 70*14 = 980
4) Найдем площадь треугольника CDH. (14*14)/2 = 98
5) Найдем общую площадь: 980+98*2 = 1176