Решим неравенства: (1) x > 35 (2) x ≤ 99 (3) x > 8 (4) x ≥ 10 (5) x > 5
Если верно неравенство (1), то автоматически верны неравенства (3), (4) и (5), и верных неравенств не меньше 4, хотя по условию их только 3. Значит, неравенство (1) неверно, x ≤ 35, откуда следует, что неравенство (2) верно.
Среди оставшихся неравенств (3), (4) и (5) должны быть два верных и одно неверное. Если верно неравенство (4), то сразу же верны и остальные неравенства, чего быть не должно, поэтому неравенство (4) неверно, а неравенства (3) и (5) верны.
Системе неравенств 5 < 8 < x < 10 ≤ 35 ≤ 99 удовлетворяет единственное натуральное число x = 9.
250 – 100%
X - 6% отсюда x=15граммов (значит в растворе будет 15 граммов этого вещества)
Дальше предположим что мы взяли по 100 граммов с каждого раствора то получается
4 гр. С 1-го раствора т 9гр. Со второго и того 13 граммов вещества…и нам необходимо получить из 50 граммов 2 грамма вещества
Берем эти 50 граммов 1-го раствора так как 50гр.-100%
X гр.- 4% отсюда x=2
И так необходимо взять 150 грамм четырёхпроцентного и 100 грамм девятипроцентного