Первое число, кратное 6 и большее 100 - это число 102.
Можно рассматривать последовательность этих чисел как арифметическую прогрессию, у которой а₁ = 102, разность d = 6.
Найдем количество элементов последовательности n.
Формула n-го члена арифметической прогрессии an = а₁ + d(n - 1).
an < 200, поэтому решим неравенство а₁ + d(n - 1) < 200 и найдем n:
102 + 6 · (n - 1) < 200,
102 + 6n - 6 < 200,
6n + 96 < 200,
6n < 200 - 96,
6n < 104,
n < 17 целых 2/6, т.е. n < 17 целых 1/3. Значит, n = 17.
Формула суммы n первых членов арифметической прогрессии:
Sn = (2а₁ + d(n - 1))/2 · n.
S₁₇ = (2 · 102 + 6 · 16)/2 · 17 = (204 + 96)/2 · 17 = 300/2 · 17 = 150 · 17 = 2550.
ответ: 2550.
Дано:
28 линий связи;
n - число пунктов управления, где каждый связан с каждым пунктом:
n-1 - число линий связи каждого пункта
( если каждый пункт связан с каждым, то число линий связи пункта управления равно числу пунктов минус 1, потому, что пункт не связан сам с собой);
Поскольку 1 линия связи связывает 2 пункта, то общее число линий связи можно выразить формулой n*(n-1)/2
n(n-1)/2=28
n²-n=56
n²-n-56=0
n₁+n₂=1
n₁*n₂=-56
n₁=8
n₂=-7 - стороний корень (количество не может быть отрицательно)
n=8
ответ: Было развернуто 8 мобильных пунктов управления