1),Число √n должно быть трехзначным от 317 до 999. Тогда n будет 6-значным, а вместе как раз 9 цифр. 2) Число √n должно быть меньше 950, потому что 950^2=902500, то есть 9 повторяется в n и в √n. 3) Число √n не может кончаться на 1, 5 и 6, потому что n^2 кончаются на те же цифры. 4) Нам нужно найти наибольшее число, поэтому начинаем от 948 и идём назад до 912. 5) Если √n начинается на 9, то оно не может кончаться на 3 и на 7. И конечно пропускаем все числа с повторами цифр. Остаётся немного чисел: 948,943,938,934,932,928,924, 918,914,912. Они все не подходят. 6) Начинаем от 897 и двигаемся дальше. Довольно быстро находим: 854^2=729316
3) (2 - 3х)(5х - 3) - х(2 - х) = 3 - 12х²,
10х - 6 - 15х² + 9х - 2х + х² - 3 + 12х² = 0,
-2х² + 17х - 9 = 0,
2х² - 17х + 9 = 0,
a = 2, b = -17, c = 9;
4) (1 - 2x)(2x - 4) - 3(2 - x) = 3 - 9x²,
2x - 4 - 4x² + 8x - 6 + 3x - 3 + 9x² = 0,
5x² + 13x - 13 = 0,
a = 5, b = 13, c = -13;
5) (5 + 2x)(4x - 1) - 2(2 + 3x) = -13x²,
20x - 5 + 8x² - 2x - 4 - 6x + 13x² = 0,
21x² + 12x - 9 = 0,
7x² + 4x - 3 = 0,
a = 7, b = 4, c = -3;
6) (2 - 6x)(x - 4) - 3x(1 - x) = -22x²,
2x - 8 - 6x² + 24x - 3x + 3x² + 22x² = 0,
19x² + 23x - 8 = 0,
a = 19, b = 23, c = -8.