Подробно:
Пусть первый рабочий делает х деталей в час.
Тогда второй рабочий делает х-3 детали в час.
Первый рабочий сделает 391 детали за
391:х часов
второй рабочий сделает 460 деталей за
460:(х-3)
По условию задачи время первого рабочего при изготовлении 391 детали меньше времени второго рабочего при изготовлении 460 деталей на 6 часов.
Запишем и решим уравнение:
460:(х-3) - 391:х =6
Умножим обе части уравнения на х(х-3)
460х - 391(х-3) =6 х(х-3)
460х - 391х+1173 =6 х²-18х
6 х² -69х-18х - 1173=0
6 х² -87х - 1173=0
для облегчения вычислений разделим на 3 обе части уравнения
2 х² - 29х-391=0
Дискриминант равен:
D=b2-4ac=-292-4·2·-391=3969
У уравнения 2 корня.
х=23
Второй корень отрицательный, он не подходит.
Первый рабочий делает в час 23 детали.
Проверка:
460:(23-3) -391:23=6
Коротко:
Пусть первый рабочий делает х деталей в час.
Тогда второй рабочий делает х-3 детали в час.
Составим и решим уравнение
460:(х-3) - 391:х =6
6 х² -87х - 1173=0
Дискриминант равен:
D=b2-4ac=-292-4·2·-391=3969
х=23
ответ:23 детали в час
1. y= (1/x) + 34
2.(не уверен, но вроде) y=∛(1-х^3 )
3. да
Объяснение:
1. как делается обратная функция: мы выражаем х через у, а потом в получившейся формуле меняем х на у
х-34=1/у
х=(1/у)+34
у=(1/х)+34
2. у^3=1-х^3
х^3=1-у^3
у=∛(1-х^3 )
3. что мы сделаем: мы возьмём произвольные х1 и х2, такие что х1>х2
и приведем к виду функции, если окажется, что выражение с х1 остается большим значит функция увеличивается, нет - наоборот.(не уверен в
х1>х2
-7х1<-7х2
10-7х1<10-7х2
выражение с х2 больше значит функция уменьшается, ответ да.