Рост у Алисы сравнительно невысокий – где-то 160 см, и то в сапогах на толстой подошве. У Алисы невероятные рыжие волосы, в существование которых трудно поверить – такого натурального, морковно-ораьнжвого цвета Волос Алиса больше нигде не видела. У девочки большие, зеленые, как изумруд глаза и пухлые щеки – результат бесконечного поедания сладостей. Фигура у Алиса отнюдь не модельная – она выделятся из общей массы тонких и худых одноклассниц. Нельзя сказать, что Алиса толстая, но говорить о том, что она уж больно худая тоже не полагается. Впрочем, на руки ее подхватить весьма легко. У Алисы всегда веселый и жизнерадостный взгляд, глаза ее всегда горят огнем предвкушения какого-то великого открытия, потому что каждый раз, открывая глаза, Алиса верит, что вот-вот разглядит где-то вдалеке белого кролика. Алиса предпочитает носить одежду средневекового стиля, что подчеркивает ее индивидуальность. Помимо всего этого в гардеробе Алисы нету ни одной пары брюк – она носит исключительно юбки, платья и сарафаны, что тоже является частью ее странного образа девочки из Страны чудес. Когда Алиса говорит она внимательно смотрит в глаза своего собеседника – девочка уверена, глаза всегда говорят куда больше слов. Для нее глаза – самое важное в человеке. Кожа у Алисы светлая, как и у любого человека, который рос в дождливом и пасмурном Лондоне. И еще пару слов о очень-очень рыжих Алисиных волосах - это ее главная гордость. Когда-то она вбила себе в голову что рыжий цвет волос - самый волшебный.
Во слишком много - ответы тоже краткие.
Объяснение:
1,1 f(-6) = 1/3*36 +12 = 24 - ответ.
1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ
2. Не допускается деление на 0.
Дано: y =x²-1*x-6 - квадратное уравнение.
Вычисляем дискриминант - D.
D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень
3 и -2 - корни уравнения - исключить из ООФ.
D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ
3,1
Дано: y = x²-4*x+3 - квадратное уравнение.
D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень
3 и 1 - нули функции.
Минимум посередине между нулями = (1+3)/2 = 2 = x.
Fmin(2) = -1
Вершина параболы в точке А(2;-1), ветви вверх.
1) E(f) = [-1;+∞) - область значений.
2) Убывает: х = (-∞;2)
3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ
4) Графики на рисунке в приложении.
5) Разрывы при делении на 0 в знаменателе.
х² ≠ 16 и х ≠ ± 4.
D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.