с двух различных измерительых приборов были измерены диаметры оснований 20 стальных заготовок цилиндрической формы результаты в левой таблице а вторым - в правой
1) а) F'(x)=3*x^2+8*x-5+0 Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x) б) F'(x)=3*4*x^3-1/x=12*x^3-1/x Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x) 2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x След. F'(x)=f(x) б) F(x)=3*e^x Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x) 3) F(x)=x^3+2x^2+C, т. к. (x^3)'=3x^2 (2x^2)'=2*2x=4x C'=0 1. f(x)=3x^2+4x След. , F'(x)=f(x) 2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство 5=3+С С=2 ответ: F(x)=x^3+2x^2+2 4) у=x^2 у=9 x^2=9 х1=-3 х2=3 Границы интегрирования: -3 и 3 Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54 S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9 Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36 В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
Пусть х – число этажей, у – квартир, z –подъездов. х*y*z=231 Разложим число 231 на множители: 3*7*11=231 По условиям задачи количество квартир на каждом этаже больше 2, но меньше 7, т.е. 2> у <7 Отсюда видно, что число квартир равное 7 или 11 не подходит, т.к. не будет выполняться неравенство. Неравенство выполняется, если количество квартир на этаже равно 3: 2> 3 <7 (Значит 7 и 11 квартир быть не может). Количество квартир у =3
Пусть число этажей z=7 (11 подъездов), тогда количество квартир в подъезде составляет 3*7=21 первый подъезд имеет счет квартир: с 1 по 21 второй подъезд: с 22 по 42 Не подходит, т.к. не выполняется условие задачи: во втором подъезде есть квартира номер которой больше 42. Если число этажей 7, а число квартир 3, тогда максимальный номер квартиры во втором подъезде 42.
Возьмем количество этажей равным z=11, тогда количество квартир в подъезде 11*3=33 1 подъезд: с 1 по 33 номер 2 подъезд: с 34 по 66 номер (больше 42). Выполнены все условия задачи. Значит, в доме 11 этажей, 7 подъездов и 3 квартиры на каждом этаже. ответ: 11 этажей.