М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Аrvin
Аrvin
21.11.2020 21:24 •  Алгебра

Найти область допустимых значений переменных в алгебраической дроби: Количество соединений: 3

4 — X
(-oo; 5)
x + 3
2x – 7
(-00;
2х + 1
3х + 15
(-00;3,5)
- Назад​


Найти область допустимых значений переменных в алгебраической дроби: Количество соединений: 32х4 — X

👇
Открыть все ответы
Ответ:
sunriseliva
sunriseliva
21.11.2020

(-∞ ;-3) => функция выпукла;

(-3; +∞) => функция вогнута;

(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;

(-6; 0) <=> f'(x) < 0 => функция убывает;

(0; +∞) <=> f'(x) > 0 => функция возрастает ;

Объяснение:

1. Находим интервалы возрастания и убывания. Первая производная.  

f'(x) = 3x2+18x  

или  

f'(x)=3x(x+6)  

Находим нули функции. Для этого приравниваем производную к нулю  

x(x+6) = 0  

Откуда:  

x1 = 0  

x2 = -6

(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;

(-6; 0) <=> f'(x) < 0 => функция убывает;

(0; +∞) <=> f'(x) > 0 => функция возрастает ;

В окрестности точки x = -6 производная функции меняет знак с (+) на (-). Следовательно, точка x = -6 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.  

2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.  

f''(x) = 6x+18  

Находим корни уравнения. Для этого полученную функцию приравняем к нулю.  

6x+18 = 0  

Откуда точки перегиба:  

x1 = -3

(-∞ ;-3) => функция выпукла;

(-3; +∞) => функция вогнута;

4,5(83 оценок)
Ответ:
Соня200789
Соня200789
21.11.2020

Объяснение:

Уравнение касательной имеет вид:

y=f(x_0)+f'(x_0)(x-x_0)y=f(x

0

)+f

(x

0

)(x−x

0

)

Дана функция:

f(x)=-x^2-4x+2f(x)=−x

2

−4x+2

Найдём значение функции в точке x₀:

f(x_0)=f(-1)=-(-1)^2-4 \cdot (-1)+2=-1+4+2=5f(x

0

)=f(−1)=−(−1)

2

−4⋅(−1)+2=−1+4+2=5

Найдём производную функции:

f'(x)=-2x^{2-1}-4=-2x-4f

(x)=−2x

2−1

−4=−2x−4

Найдём производную функции в точке x₀:

f'(x_0)=f'(-1)=-2 \cdot (-1) -4 =2-4=-2f

(x

0

)=f

(−1)=−2⋅(−1)−4=2−4=−2

Подставим найденные значения, чтобы найти уравнение касательной:

y=f(x_0)+f'(x_0)(x-x_0)y=f(x

0

)+f

(x

0

)(x−x

0

)

y=5+(-2)(x-(-1))y=5+(−2)(x−(−1))

y=5-2(x+1)y=5−2(x+1)

y=5-2x-2y=5−2x−2

\boxed{y=-2x+3}

y=−2x+3

ответ: y=-2x+3 - искомое уравнение.

4,7(45 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ