Пусть начальная цена 1 стола была х рублей, а начальная цена 1 стула была у рублей. Тогда за два стола и шесть стульев надо заплатить 2*х+6*у рублей, что по условию задачи 232 рубля.
Получаем первое уравнение: 2*х+6*у = 232
После того, как столы подешевели на 15%, они стали стоить (х-0,15х) рублей (т.к. 15% от х - это 0,15х, а когда они подешевели, от начальной цены отняли величину их удешевления).
После того, как стулья подешевели на 20%, они стали стоить (у-0,2у) рублей (т.к. 20% от у - это 0,2у, а когда они подешевели, от начальной цены отняли величину их удешевления)
Тогда за один стол и два стула по новым ценам заплатили 1*(х-0,15х) + 2*(у-0,2у) рублей, что по условию задачи 87,2.
Получаем второе уравнение: 0,85х+2*0,8у=87,2.
Решаем получившуюся систему:
80 рублей - начальная цена стола, 12 рублей - начальная цена стула.
б) если рассмотреть равенство: x² + (y+1)² = 4
то график этого уравнения --это окружность с центром в (0; -1) радиуса 2.
уравнение окружности с центром (x₀; y₀) радиуса R: (х-х₀)² + (y-y₀)² = R²
в задании знак неравенства "больше", т.е. это часть плоскости ВНЕ круга, включая границу (окружность)
например: точка (2;-3)
2² + (-3+1)² ≥ 4 верно...
а) неравенство с модулем со знаком "меньше" равносильно двойному неравенству: -2 < y-x-1 < 2 (прибавим 1)
-1 < y-x < 3
двойное неравенство равносильно системе неравенств (пересечению промежутков):
{y-x<3
{y-x>-1
или
{ y < x+3 (часть плоскости НИЖЕ (знак "<") прямой у=х+3)
{ y > x-1 (часть плоскости ВЫШЕ (знак ">") прямой у=x-1)
это полоса между параллельными прямыми...
и всегда можно проверить...
например, точка (2;-1) не принадлежит этому множеству...
|-1-2-1| < 2 неверно
точка (0;0) принадлежит этому множеству...
|0-0-1| < 2 верно