Для начала найдём точки экстремума, для этого вычислим производную функции и приравняем её к 0 y'=((x+2)²(x+4)+3) Но перед этим раскроем скобки (x+2)²(x+4)+3=(x²+4x+4)(x+4)+3=x³+4x²+4x²+16x+4x+16+3=x³+8x²+20x+19 y'=(x³+8x²+20x+19)'=3x²+16x+20 3x²+16x+20=0 D=16²-4*3*20=256-240=16 x=(-16-4)/6=-20/6=-10/3≈-3,333 - не входит в заданный отрезок [-3;2] x=(-16+4)/6=-2 Теперь находим значения функции на границах отрезка [-3;2] и в точке x=-2 y(-3)=(-3+2)²(-3+4)+3=1+3=4 y(-2)=(-2+2)²(-2+4)+3=3 y(2)=(2+2)²(2+4)+3=16*6+3=99 Наименьшее значение функции на отрезке [-3;2] равно у=3 при х=-2
Я не знаю, как решать корректно, но я решил методом подстановки (назовём это так): Для начала возьмём максимум бетонных плит. Для этого 5т переводим в кг. Получаем 5000 кг. 5000 кг делим на 300 кг бетонных плит и получаем 16,(6). Соответственно, если мы возьмём 17, то ответ уже будет больше 5000 кг. Значит берём 16. Чтобы вы понимали, 16 - это кол-во грузов. А 300 кг - это масса одного груза. 300 кг умножаем на 16. Получаем 4800 кг. Осталось 200 кг свободного места. Теперь берём балки весом 48 кг. 200 кг делим на 48 кг и получаем 4,1(6). Пробуем 5. Не получается (Т.к. больше 200). Значит берем 4. Получаем 192 кг. 200 кг - 192 кг= 8 кг. Ну а с кирпичами берём два, Т.к. если возьмём три, то это будет уже больше 8. Теперь всё складываем: 16*300 + 4*48 + 2*3=4998
ответ: наибольшая масса груза, которую можно перевезти на данном грузовике, равна 4998 кг.
y'=((x+2)²(x+4)+3)
Но перед этим раскроем скобки
(x+2)²(x+4)+3=(x²+4x+4)(x+4)+3=x³+4x²+4x²+16x+4x+16+3=x³+8x²+20x+19
y'=(x³+8x²+20x+19)'=3x²+16x+20
3x²+16x+20=0
D=16²-4*3*20=256-240=16
x=(-16-4)/6=-20/6=-10/3≈-3,333 - не входит в заданный отрезок [-3;2]
x=(-16+4)/6=-2
Теперь находим значения функции на границах отрезка [-3;2] и в точке x=-2
y(-3)=(-3+2)²(-3+4)+3=1+3=4
y(-2)=(-2+2)²(-2+4)+3=3
y(2)=(2+2)²(2+4)+3=16*6+3=99
Наименьшее значение функции на отрезке [-3;2] равно у=3 при х=-2