1. Для следующей алгебраической дроби: 3х-9/5х+6 а) При каком значении переменной не определяется значение алгебраической дроби? б) При каком значении переменной значение алгебраической дроби равно нулю? Если не сложно может со всеми?((( Сор
Пусть собственная скорость теплохода х км/ч. Скорость теплохода по течению реки равна (х + 3) км/ч. Скорость теплохода против течения реки (х – 3) км/ч. На путь по течению реки теплоходу понадобилось 76/(х + 3) часа, а на путь против течения реки – 76/(х – 3) часа. На весь путь туда и обратно теплоход потратил (76/(х + 3) + 76/(х – 3)) часа или (20 – 1) = 19 часов. Составим уравнение и решим его.
76/(х + 3) + 76/(х – 3) = 19 – приведем к общему знаменателю (х + 3)(х – 3) = x^2 – 9; первую дробь домножим на (х – 3), вторую – на (х + 3) и число 19 – на (x^2 – 9); далее решаем без знаменателя, т.к. две дроби с одинаковым знаменателем равны, если равны их числители;
Утверждать, что цена выросла на 50%, нельзя, поскольку «первые» 30% подсчитываются от цены в конце декабря, а «вторые» 20% - от другой величины, цены на конец января. Потом будем рассуждать последовательно, обозначив для удобства первоначальную цену S. В конце января она стала равна 1,3S, а в конце февраля – 1,2 * (1,3S) = 1,56S. Следовательно, она выросла на 56%.
Решение можно записать так:Пусть S – первоначальная цена.1)1,3S – цена в конце января (130% от S).2)1,2 * (1,3S) = 1,56S – цена в конце февраля (120% от 1,3S).3)1,56S составляет 156% от S.156% - 100% = 56%ответ: за 2 месяца цена выросла на 56%.
Пусть собственная скорость теплохода х км/ч. Скорость теплохода по течению реки равна (х + 3) км/ч. Скорость теплохода против течения реки (х – 3) км/ч. На путь по течению реки теплоходу понадобилось 76/(х + 3) часа, а на путь против течения реки – 76/(х – 3) часа. На весь путь туда и обратно теплоход потратил (76/(х + 3) + 76/(х – 3)) часа или (20 – 1) = 19 часов. Составим уравнение и решим его.
76/(х + 3) + 76/(х – 3) = 19 – приведем к общему знаменателю (х + 3)(х – 3) = x^2 – 9; первую дробь домножим на (х – 3), вторую – на (х + 3) и число 19 – на (x^2 – 9); далее решаем без знаменателя, т.к. две дроби с одинаковым знаменателем равны, если равны их числители;
76(x – 3) + 76(x + 3) = 19(x^2 – 9);
76x – 228 + 76x + 228 = 19x^2 – 171;
-19x^2 + 76x + 76x + 171 = 0;
19x^2 – 152x – 171 = 0;
D = b^2 – 4ac;
D = (- 152)^2 – 4 * 19 * (- 171) = 23104 + 12996 = 36100; √D = 190;
x = (- b ± √D)/(2a);
x1 = (152 + 190)/(2 * 19) = 342/38 = 9 (км/ч);
x2 = (152 – 190)/(2 * 19) < 0 – скорость не может быть отрицательным числом.
ответ. 9 км/ч
Объяснение:
думаю ))