Пусть первое число равно х, тогда второе - 15-х. Среднее арифметическое равно 15/2=7,5, а квадрат среднего геометрического равен х(15-х). Имеем уравнение 1,25х(15-х)=7,5; 5х(15-х)=30; х(15-х)=6; 15х-х^2-6=0; х^2-15x+6=0; D=225-24=201; K(D)=K(201); x1=(15+K(201))/2; x2=(15-K(201))/2. Значит первое число может быть (15+K(201))/2 или (15-K(201))/2, тогда второе число будет (15-K(201))/2 или (15+K(201))/2
Если все двугранные углы при основании пирамиды равны, то проекции боковых рёбер совпадают с биссектрисами углов треугольника в основании пирамиды. Вершина пирамиды проецируется в центр вписанной в основание окружности. Радиус r вписанной окружности равен: r = H/tgβ. Сторона АВ = r+(r/tg(α/2)) = r(1+tg(α/2))/tg(α/2) = H(1+tg(α/2))/(tg(α/2)*tgβ). Сторона ВС = АВ*tgα = Htgα(1+tg(α/2))/(tg(α/2)*tgβ). Площадь основания равна: So = (1/2)AB*BC = (1/2)(H²tgα(1+tg(α/2)²/((tg²(α/2)*tg²β)). ответ: V = (1/3)So*H = (1/6)(H³tgα(1+tg(α/2)²/((tg²(α/2)*tg²β)).
1,25х(15-х)=7,5; 5х(15-х)=30; х(15-х)=6; 15х-х^2-6=0; х^2-15x+6=0; D=225-24=201; K(D)=K(201); x1=(15+K(201))/2; x2=(15-K(201))/2. Значит первое число может быть
(15+K(201))/2 или (15-K(201))/2, тогда второе число будет (15-K(201))/2 или (15+K(201))/2