1-ый класс - 42 ученика
2-ой класс - ? учеников, на 3 <, чем в 3-ем ВСЕГО: 125 учеников
3-ий класс - ? учеников
Пусть Х учеников - в 3-ем классе (это вопрос задачи, поэтому его принимаем за Х).
Тогда во 2-ом классе - (Х-3) учеников. В 1-ом классе - 42 ученика. Всего 125 учеников (т.е. находим сумму). Составим уравнение:
42+(Х-3)+Х=125
42+Х-3+Х=125
Х+Х+42-3=125
2Х+39=125
2Х=125-39
2Х=86
Х=86:2
Х=43
ответ: 43 ученика в 3-ем классе.
Т.е. все отрицательные и натуральные числа.
Множества называются равными если:
и
Пусть:
Так как
То:
Т.е. либо n зависит от m:
Либо m от n:
Теперь, если то,значит, есть такой элемент так что .
Т.е. выполняется:
Значит:
Но мы знаем что для каждого n и m выполняется n=m+1. Значит противоречие и наше предположение о том что А не является подмножеством В не верно.
Т.е.
Теперь, если предположить что , то значит есть такой элемент так что:
Т.е. выполняется:
Значит :
Но этого не может быть. Значит противоречие.
Отсюда следует: