ответ предыдущего пользователя Formik правильный, но возможно кому-то будет проще решать через перестановки, то
1) Можно просто отнять от числа всех возможных перестановок из 10 элементов по 10, то есть , число перестановок, когда 0 стоит на первом месте, то есть .
Имеем:
2) Чтобы понять лучше, почему именно 9!, давайте продемонстрируем это на 4 числах. К примеру, у нас есть числа 0, 1, 2, 3. Нас просят найти сколько таких перестановок может быть, если числа (1) не повторяются и (2) различаются друг от друга порядком их размещения. Мы также помним, что число 0 не может стоять на первом месте. Давайте подумаем как 0 может стоять на первом месте:
0123, 0132, 0231, 0213, 0312, 0321. - Всего 6 перестановок. Но вдумайтесь: мы ищем только те перестановки, КОТОРЫЕ ПОСЛЕ 0, так как 0 стоит на первом месте, мы его не меняем вместе с остальными цифрами! Это нужно понять.
Поэтому, от числа всех перестановок, которые могли бы быть, это 4!, мы должны отнять все те перестановки, когда 0 стоит на первом месте, это 3!, так как меняем мы 3 цифры после 0! И выходит у нас: разместить все цифры так, чтобы 0 не стоял на первом месте! (см. ниже фото)
3) Аналогично делаем когда у нас 10 цифр: мы просто находим перестановки цифр, которые после 0 - это 9!, от числа всех перестановок, которые могли бы быть вообще, если бы не было условия, что 0 не может стоять не первом месте - это 10!
Вероятность того, что в течение года перегорит не менее трёх ламп равна сумме вероятностей того, что перегорит 3 или 4 лампы. Вероятность того, что перегорит три лампы равна P(3)=0,8^3*0,2=0,1024 Вероятность того, что перегорит три лампы равна P(4)=0,8^4=0,4096 Вероятность того, что в течение года перегорит не менее трёх ламп равна : P(3,4)=0,1024+0,4096=0,512
Вероятность того, что перегорит не более трёх ламп равна разности единицы и вероятности того, что прегорят все четыре лампы. Вероятность того, что не перегорят все 4 лампы равна P(4)=0,8^4=0,4096 Вероятность того, что перегорит не более трёх ламп равна: P(0,1,2,3)=1-0,4096=0,5904
3265920
Объяснение:
ответ предыдущего пользователя Formik правильный, но возможно кому-то будет проще решать через перестановки, то
1) Можно просто отнять от числа всех возможных перестановок из 10 элементов по 10, то есть , число перестановок, когда 0 стоит на первом месте, то есть .
Имеем:
2) Чтобы понять лучше, почему именно 9!, давайте продемонстрируем это на 4 числах. К примеру, у нас есть числа 0, 1, 2, 3. Нас просят найти сколько таких перестановок может быть, если числа (1) не повторяются и (2) различаются друг от друга порядком их размещения. Мы также помним, что число 0 не может стоять на первом месте. Давайте подумаем как 0 может стоять на первом месте:
0123, 0132, 0231, 0213, 0312, 0321. - Всего 6 перестановок. Но вдумайтесь: мы ищем только те перестановки, КОТОРЫЕ ПОСЛЕ 0, так как 0 стоит на первом месте, мы его не меняем вместе с остальными цифрами! Это нужно понять.
Поэтому, от числа всех перестановок, которые могли бы быть, это 4!, мы должны отнять все те перестановки, когда 0 стоит на первом месте, это 3!, так как меняем мы 3 цифры после 0! И выходит у нас: разместить все цифры так, чтобы 0 не стоял на первом месте! (см. ниже фото)
3) Аналогично делаем когда у нас 10 цифр: мы просто находим перестановки цифр, которые после 0 - это 9!, от числа всех перестановок, которые могли бы быть вообще, если бы не было условия, что 0 не может стоять не первом месте - это 10!