a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
1) пусть x- скорость автомобилиста, тогда скорость мотоциклиста x-20; s=vt; s которое проехал автомобилист= 5x, а расстояние, которое проехал мотоциклист= 7(x-20) так как расстояние они проехали одинаковое мы их приравниваем 5x=7(x-20) отсюда x=70( скорость автомобилиста).
Скорость мотоциклиста= 70-20=50
2)пусть x- скорость мотоциклиста, тогда скорость велосипедиста x-25; s=vt; t мотоциклиста=2 целых 15/60=2,25;
s которое проехал мотоциклист= 2,25x, а расстояние, которое проехал велосипедист= 6(х-25), так как расстояние они проехали одинаковое мы их приравниваем 2,25х=6(х-25) отсюда x=40( скорость мотоциклиста).Скорость велосипедиста= 40-25=15.