Объяснение:
(3-5,8x)-(2,2x+3)=16
3-5,8x-2,2x-3=16
-8x=16
x=-16/8=-2
6x-5(3x+2)=5(x-1)-8
6x-15x-10=5x-5-8
-9x-10=5x-13
5x+9x=13-10
14x=3
x=3/14
(3x+7)/2=(6x+4)/5
5(3x+7)=2(6x+4)
15x+35=12x+8
12x-15x=35-8
-3x=27
x=-27/3=-9
x/4 -(x-3)/5=-1
(5x-4(x-3))/(4*5)=-1
5x-4x+12=-20
x=-20-12=-32
(8x-3)/7 -(3x+1)/10=2
(10(8x-3)-7(3x+1))/(7*10)=2
80x-30-21x-7=70*2
59x-37=140
59x=140+37
x=177/59=3
(15x+27)(-5x-9)=0
15x+27=0
15x=-27
x1=-27/15=-9/5=-1 4/5=-1,8
-5x-9=0
5x+9=0
5x=-9
x2=-9/5=-1,8
ответ: x=-1,8.
|8x-4|-7=13
8x-4=13+7
8x-4=20
8x=20+4
x1=24/8=3
8x-4=-20
8x=-20+4
x2=-16/8=-2
3x^ + 2x - 5 = 0
Найдем дискриминант квадратного уравнения:
D = b^ - 4ac = 22 - 4·3·(-5) = 4 + 60 = 64
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = -2 - √64 2·3 = (-2 - 8)÷6 =-10/6 = -5/3 ≈ -1.6666666666666667
x2 = -2 + √64 2·3 = (-2 + 8)÷6 =6/6 = 1
2уравнение:
5x^+3x−2=0
Коэффициенты уравнения:
a=5, b=3, c=−2
Вычислим дискриминант:
D=b2−4ac=32−4·5·(−2)=9+40=49
(D>0), следовательно это квадратное уравнение имеет 2 различных вещественных корня:
Вычислим корни:
x(1,2)=−b±√D÷2a
x1=−b+√D÷2a=−3+7÷2·5=4/10=0,4
x2=−b−√D÷2a=−3−7÷2·5=−10/10=−1
5x2+3x−2=(x−0,4)(x+1)=0
ответ: x1=0,4;x2=−1