М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Эээээээ11
Эээээээ11
28.04.2021 01:59 •  Алгебра

Розв’язати економічні задачі на застосування похідної та диференціала функції Фірма реалізує свою продукцію за ціною р=40 умов. грош. од. за одиницю, а витрати виробництва при цьому визначаються функцією C(x)=4x+3x^3.Знайти оптимальний для фірми обсяг випуску продукції та відповідальний йому прибуток.

👇
Открыть все ответы
Ответ:
мыпоммрт
мыпоммрт
28.04.2021
I вариант

а)

\frac{5y - 8}{11}

ОДЗ:у-любое число

б)

\frac{25}{y - 9}

ОДЗ:у-любое число,кроме у≠9

у-9=0

у=9

в)

\frac{y {}^{2} + 1 }{ {y}^{2} - 9 }

ОДЗ:у-любое число, кроме у≠3,у≠ -3

у²-9=0

(у-3)(у+3)=0

у-3=0 или у+3=0

у=3 у= -3

г)

\frac{y - 10}{y {}^{2} + 3 }

ОДЗ:у-любое число

у²+3=0

у²≠ -3

ответ:уравнение не существует, квадрат числа не может быть отрицательным

д)

\frac{ - y}{y - 6} + \frac{7}{y + 6}

ОДЗ:у-любое число,кроме у≠6,у≠ -6

у-6=0 или у+6=0

у=6 у= -6

е)

\frac{41}{x} - \frac{x - 2}{x + 7}

ОДЗ-х-любое число,кроме х≠0,х≠ -7

х=0 или х+7=0

х= -7

II вариант

а)

\frac{7x - 4}{12}

ОДЗ:х-любое число

б)

\frac{16}{4 - a}

ОДЗ:а-любое число,кроме а≠4

4-а=0

-а= -4

а=4

в)

\frac{ {a}^{2} + 3}{ {a}^{2} - 16 }

ОДЗ:а-любое число, кроме а≠4,а≠ -4

а²-16=0

(а-4)(а+4)=0

а-4=0 или а+4=0

а=4 а= -4

г)

\frac{x - 7}{ {x}^{2} + 4 }

ОДЗ:х-любое число

х²+4=0

х²≠ -4

ответ:уравнение не существует, квадрат числа не может быть отрицательным

д)

\frac{x}{x - 4} + \frac{4}{x + 4}

ОДЗ:х-любое число,кроме х≠4,х≠ -4

х-4=0 или х+4=0

х=4 х= -4

е)

\frac{21}{a} + \frac{4}{a - 1}

ОДЗ:а-любое число,кроме а≠0,а≠1

а=0 или а-1=0

а=1

ОДЗ-область допустимых значений
4,6(93 оценок)
Ответ:
0689433382
0689433382
28.04.2021
Классическое решение делается в двух основных частях:

1) Поиск ОДЗ – область допустимых значений.
2) Решение уравнения.

Немного о первом.
Все семь основных арифметических действий + , - , \cdot , : , x^n , \sqrt[n]{x} и \log_a{x} – имеют ОДНОЗНАЧНЫЙ результат. Вы, возможно знаете пока не все из них, но это не меняет ничего в рассуждениях. Однозначность действия означает, что при вычислении результата любого из них получается однозначный ответ. Ну, например, ведь нет такого, что у одного при вычислении 3 + 5 = 8 , а у другого 3 + 5 = 7 :–) ?! Конечно же, нет, это бы вызывало полную неразбериху и ни в одной науке ничего нельзя было бы вычислить ни по одной формуле. Но иногда, при изучении квадратного корня, учащиеся понимают это действие не совсем корректно, полагая, что \sqrt{4} = 2 , но одновременно с тем как бы и \sqrt{4} = - 2 . Это ошибка! Так понимать действие корня нельзя. Любой калькулятор покажет именно \sqrt{4} = 2 , и это и есть верный результат вычислений, поскольку он единственный, так как любое арифметическое действие должно давать ОДНОЗНАЧНЫЙ результат.

Происхождение такого недоразумения вполне объяснимо. Это происходит из созвучности понятий «квадратный арифметический корень» и «корни нелинейного уравнения». Выше мы говорили именно о «квадратном арифметическом корне», и об однозначности этого арифметического действия, а что такое «корни нелинейного уравнения» можно проиллюстрировать на таком примере, как x^2 = 4 . Корни этого нелинейного уравнения, как легко понять: x_1 = -2 и x_2 = 2 или в короткой записи x = \pm 2 , что равносильно x = \pm \sqrt{4} , где сам «арифметический квадратный корень» \sqrt{4} – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему. Аналогично, например, для уравнения: x^2 = 7 . Корни этого нелинейного уравнения, как легко понять: x = \pm \sqrt{7} , где сам «арифметический квадратный корень» \sqrt{7}– это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему.

Значит при поиске ОДЗ (область допустимых значений) нужно всегда учитывать, что подкоренное выражение (всё то, что стоит под знаком корня) во-первых: должно быть неотрицательным, потому что иначе нельзя извлечь корень, а во-вторых: результат вычисления самого арифметического квадратного корня должен быть равен тоже неотрицательному числу, по причинам, которые были подробно описаны в предыдущем абзаце. Есть ещё несколько простых принципов, по которым выстраивается логика ОДЗ, но в данной задаче они не нужны, так что не будем все их перечислять. А теперь решим задачу классическим

Р Е Ш Е Н И Е :

\sqrt{ x + 4 } - x + 2 = 0 ;

\sqrt{ x + 4 } = x - 2 ;

1. ОДЗ:

\left\{\begin{array}{l} x + 4 \geq 0 ; \\ x - 2 \geq 0 . \end{array}\right

\left\{\begin{array}{l} x \geq -4 ; \\ x \geq 2 . \end{array}\right

x \in [ 2 ; +\infty ] ;

2. Решение уравнения:

( \sqrt{ x + 4 } )^2 = ( x - 2 )^2 ;

x + 4 = x^2 - 2 \cdot x \cdot 2 + 2^2 ;

x + 4 = x^2 - 4x + 4 ;

x^2 - 5x = 0 ;

x ( x - 5 ) = 0 ;

x_1 = 0 ,       это не соответствует ОДЗ, поскольку x_1 = 0 \notin [ 2 ; +\infty ] ;

x_2 = 5 ,       что соответствует ОДЗ, поскольку x_2 = 5 \in [ 2 ; +\infty ] ;

О Т В Е Т : x = 5 .
4,6(18 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ