М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
daniil357
daniil357
18.08.2022 23:06 •  Алгебра

Вычислите координаты точек пересечения функций 2x - y = 12 x -2y=12​


Вычислите координаты точек пересечения функций 2x - y = 12 x -2y=12​

👇
Открыть все ответы
Ответ:

ответ: 6 множеств

Объяснение:

1. Покажем, что наше множество не может содержать более 2 элементов. В самом деле, если множество содержит три элемента, то после упорядочивания по возрастанию получим:

a<b<c,

причём по условию ab=bc, отсюда a=c, что невозможно ввиду неравенства a<c. Если же множество содержит не менее четырёх элементов, то выделим в нём два наименьших и два наибольших, тогда после упорядочивания по возрастанию получим:

a<b<…<c<d,

причём ab=cd, но такое равенство невозможно, поскольку a<c и b<d. Следовательно, наше множество содержит 2 элемента.

 2. Таким образом, задача свелась к подсчёту числа решений уравнения:

ab=2020, a<b.

Поскольку 2020 не является полным квадратом, то это число есть в точности половина делителей числа 2020, то есть 6.

4,8(55 оценок)
Ответ:
моника59
моника59
18.08.2022

ответ: существует 6 чисел

Объяснение:

1. Заметим, что никакое число, не превосходящее 1010, не может иметь высоту 4. Действительно, наименьшее число высоты 4 — это

2222=216, при этом это число больше 1010.

 2. Между тем числа высоты 3, не превосходящие 1010, существуют. Например, 16=222 имеет высоту 3. Таким образом, задача свелась к подсчёту количества чисел высоты 3, не превосходящих 1010.

 3. Заметим, что

 29≤1010≤210,

 36≤1010≤37,

 44≤1010≤45,

 54≤1010≤55,

 63≤1010≤64.

 4. Найдём количество чисел высоты 3, не превосходящих 1010. Это то же самое, что найти количество решений неравенства:

x1x2x3≤1010, xi≥2.

Если x1=2, то x2x3≤9, отсюда x2=x3=2, или x2=2, x3=3, или x2=3, x3=2. Отсюда получаем 3 решения.

Далее, если x1=3,4,5, получаем, что x2=x3=2, что даёт ещё три решения.

Наконец, при x1≥6 получаем, что x2x3≤3. Но так как xi≥2, то таких x2, x3 не существует.

 5. Таким образом, получаем 3+3=6 чисел максимальной высоты, не превосходящих 1010.

4,6(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ