1)Чтобы найти возрастание и убывание функции нужно найти экстремумы и посмотреть как будет вести себя функция при малейшем отклонении. значит экстремумы в точках -(1;-1) а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой . 2) значит экстремумы в точках (-2;16),(2;16) А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2 убывает на промежутках [-2;2] возрастает (-∞;2]∪[2;+∞) 3)сначала найдём производные 1 производная : x∉R видим что первой производной нет ,ищем вторую функция выпукла: (-∞;0) f"(x)<0 функция вогнута (0;+∞) f"(x)>0
1-ая машинистка половину рукописи перепечатает за x дней , перепечатает рукопись за 2x дней ; за день_ 1/2x часть рукописи. 2-ая машинистка половину рукописи перепечатает за (9-x) дней , перепечатает рукопись за 2(9-x) дней; за день_1/2(9-x) часть рукописи. . Можем написать уравнение: 1/2x +1/2(9-x) =1/4 || *2|| ⇔ 1/x +1/(9-x) =1/2 ; 2(9-x) +2x = x(9-x) ; x² - 9x +18 =0 ; [ x =3 ; x = 6 . ⇔ [2x =6 ; 2x =12
ответ : ( 6 ; 12) или (12 ; 6) . * * * * * * * Правильно ! 1- ая машинистка рукопись перепечатает за x дней , 2-ая рукопись перепечатает за y дней . { 1/x +1/y =1/4 ; x/2 +y/2 = 9. ⇔ { 4(x+y) =xy ; x+y =18.⇔{x+y=18; xy =72.
значит экстремумы в точках -(1;-1)
а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой .
2)
значит экстремумы в точках (-2;16),(2;16)
А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2
убывает на промежутках [-2;2]
возрастает (-∞;2]∪[2;+∞)
3)сначала найдём производные
1 производная :
x∉R
видим что первой производной нет ,ищем вторую
функция выпукла:
(-∞;0)
f"(x)<0
функция вогнута
(0;+∞)
f"(x)>0