1) Ищем границы интегрирования -х² + х + 6 = х + 2 -х² = -4 х² = 4 х = +- 2 Теперь ищем интеграл, под интегралом (-х² + х + 6)dx в пределах от -2 до 2, потом интеграл, под интегралом (х +2)dx в пределах от -2 до 2, делаем вычитание и получаем площадь фигуры. а) интеграл =( -х³/3 +х²/2 +6х)| в пределах от -2 до 2=56/3 б)интеграл = (х²/2 +2х)| в пределах от -2 до 2 = 8 S = 56/3 - 8 = 4 2) Ищем границы интегрирования 4х -х² = х -х² +3х =0 х =0 х = 3 Теперь ищем интеграл, под интегралом (4 х -х²) dx в пределах от 0 до 3 потом интеграл, под интегралом хdx в пределах от 0 до 3, делаем вычитание и получаем площадь фигуры. а) интеграл =(4 x²/2 -х³/3)| в пределах от 0 до 3=9 б)интеграл = (х²/2)| в пределах от 0 до 3 = 4.5 S = 9 - 4,5 = 4,5
У игральной кости шесть граней, грани (с точечками или числом) означают число от 1 до 6
два числа дающие в сумме 7: 1+6=2+5=3+4
из них только одна пара (первая кость 2, вторая 5, или вторая 2, первая 5) дает разность 3 а именно числа 5 и 2: 5-2=3
итого. Благоприятное событие 2 (либо на первой кости 2, на второй 5 либо на первой кости 5, на второй 2)
Всех событий 36=6*6 по правилу умножения событий (6 вариантов результата броска первой кости (число от 1 до 6), 6 вариантов для второй кости (аналогично))
-х² + х + 6 = х + 2
-х² = -4
х² = 4
х = +- 2
Теперь ищем интеграл, под интегралом (-х² + х + 6)dx в пределах от -2 до 2, потом интеграл, под интегралом (х +2)dx в пределах от -2 до 2, делаем вычитание и получаем площадь фигуры.
а) интеграл =( -х³/3 +х²/2 +6х)| в пределах от -2 до 2=56/3
б)интеграл = (х²/2 +2х)| в пределах от -2 до 2 = 8
S = 56/3 - 8 = 4
2) Ищем границы интегрирования
4х -х² = х
-х² +3х =0
х =0
х = 3
Теперь ищем интеграл, под интегралом (4 х -х²) dx в пределах от 0 до 3 потом интеграл, под интегралом хdx в пределах от 0 до 3, делаем вычитание и получаем площадь фигуры.
а) интеграл =(4 x²/2 -х³/3)| в пределах от 0 до 3=9
б)интеграл = (х²/2)| в пределах от 0 до 3 = 4.5
S = 9 - 4,5 = 4,5