Пусть х пельменей в час - производительность Валентины, тогда (х + 2) пельменя в час - производительность Софьи. На лепку 112 пельменей Валентина затрачивает на 8 часов меньше, чем Софья на лепку 360 таких же пельменей. Уравнение:
360/(х+2) - 112/х = 8
360 · х - 112 · (х + 2) = 8 · х · (х + 2)
360х - 112х - 224 = 8х² + 16х
8х² + 16х - 360х + 112х + 224 = 0
8х² - 232х + 224 = 0
Разделим обе части уравнения на 8
х² - 29х + 28 = 0
D = b² - 4ac = (-29)² - 4 · 1 · 28 = 841 - 112 = 729
√D = √729 = 27
х = (-b±√D)/(2a)
х₁ = (29-27)/(2·1) = 2/2 = 1 (не подходит по условию задачи)
х₂ = (29+27)/(2·1) = 56/2 = 28
ответ: 28 пельменей в час лепит Валентина.
Проверка:
112 : 28 = 4 ч - время работы Валентины
360 : (28+2) = 360 : 30 = 12 ч - время работы Софьи
12 ч - 4 ч = 8 ч - разница
а) 4sin³x -8sin²x -sinx +2 =0 ;
4sin²x(sinx-2) -(sinx -2) =0 ;
(sinx -2)(4sin²x -1) = 0 ⇔[ sinx -2 =0 ;4sin²x -1 =0.
sinx -2 =0⇔sinx =2 || > 1 →нет решения.||
4sin²x -1= 0 ⇔4*(1-cos2x)/2 -1 = 0 ⇔cos2x =1/2 ⇒2x =±π/3 +2πk , k∈Z.
ответ: ±π/6 +πk , k∈Z.
---
б) ;
(1-cos²x) -2cosx +2 =0 * * * можно заменить t =cosx , |t| ≤1 * * *
cos²x +2cosx -3 =0 ⇒[cosx = -3(не имеет решения) ; cosx =1.
ответ: 2πk , k∈Z.
-------
N2
а) ⇔ 7^(5x-1)(7 -1) =6⇔ 7^(5x -1)*6 =6⇔7^(5x -1) =1.
7^(5x -1) =7⁰ ⇒5x-1 =0 ; x =0,2.
---
б) ;
ОДЗ : { 2x+4 >0 ; 4x -7 >0 ; 4x -7 ≠1. ⇒ x∈(1,75 ;2) U(2 ;∞).
Lq(2x+4) =2Lq(4x-7)⇒Lq(2x+4) =Lq(4x-7)² ;2 x+4 =(4x -7)² ;
16x² -58x +45 =0 ;
D/4 =29² -16*45 =841 -720 =121 =11²
x₁= (29 -11)/16 = 9/8 ∉ОДЗ .
x₂ =(29 +11)/16 = 5/2.
ответ: 2,5.
-------
N3
а) ;
y ' =( (x² +2x)' (3-4x) - (x² +2x)*(3-4x) ') /(3-4x)² =
( (2x+2)(3 -4x) +4(x² +2x)) /(3-4x)² = -2(2x² -3x-3)/(3-4x)².
---
б) ;
y ' =((5x+2)⁴) ' =4*(5x+2)³*(5x+2)' =4*(5x+2)³*5=20(5x+2)³ .
-------
N3
а) а) =(1/6)*x +C.
---
б) =(-1/3 )интеграл( e^(4-3x)d(4-3x) =(-1/3)e^(4-3x) +C.