Первое число, кратное 6 и большее 100 - это число 102.
Можно рассматривать последовательность этих чисел как арифметическую прогрессию, у которой а₁ = 102, разность d = 6.
Найдем количество элементов последовательности n.
Формула n-го члена арифметической прогрессии an = а₁ + d(n - 1).
an < 200, поэтому решим неравенство а₁ + d(n - 1) < 200 и найдем n:
102 + 6 · (n - 1) < 200,
102 + 6n - 6 < 200,
6n + 96 < 200,
6n < 200 - 96,
6n < 104,
n < 17 целых 2/6, т.е. n < 17 целых 1/3. Значит, n = 17.
Формула суммы n первых членов арифметической прогрессии:
Sn = (2а₁ + d(n - 1))/2 · n.
S₁₇ = (2 · 102 + 6 · 16)/2 · 17 = (204 + 96)/2 · 17 = 300/2 · 17 = 150 · 17 = 2550.
ответ: 2550.
55 км/ч
Объяснение:
х км/ч- первоначальная скорость поезда
10 мин- 1/6 часа
2х км- первый отрезок пути
по плану время поезда равно 220/х, но на втором отрезке пути он изменил скорость, время равно 2х/х + 1/6 + (220-2х)/(х+5), так как поезд приехал вовремя два этих выражения равны между собой, уравнение:
220/х= 2х/х + 1/6 + (220-2х)/(х+5), решим его:
220/х= 2 + 1/6 + (220-2х)/(х+5)
220/х=13/6 + (220-2х)/(х+5)
220/х=(13*(х+5) + 6*(220-2х))/6(х+5)
220/х=(13х+65+1320-12х)/(6х+30)
220*(6х+30)=х*(х+1385)
1320х+6600=х^2+1385х
х^2+65х-6600=0
Д= 65^2-4*1*(-6600)= 4225+26400=30625
х1=( -65+ корень Д)/2*1= (-65+175)/2= 110/2=55
х2= (-65-корень Д)/2*1= (-65-175)/2= -240/2= -120 (не удовлетворяет условию)