В решении.
Объяснение:
Построй график функции у=3х²+2х-5.
График - парабола со смещённым центром, ветви направлены вверх, придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 16 3 -4 -5 0 11 28
По графику найдите:
1)область значений функции;
Область значений функции - это проекция графика на ось Оу, ограниченная ординатой вершины параболы, обозначается Е(у). Ордината вершины = -5,3.
Е(у) = у∈(-5,3; +∞).
2) промежутки монотонности функции.
Функция возрастает при х∈(-0,3; + ∞);
Функция убывает при х∈(-∞; -0,3).
3) Промежутки знакопостоянства функции:
у > 0 (график выше оси Ох) при х∈(-∞4 -1,7)∪(1; +∞);
у < 0 (график ниже оси Ох) при х∈(-1,7; 1).
a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение: