Чтобы сумма 1+1/2+1/3+…+1/n была больше 1000 достаточно взять n=1000 n=2000 n=2500 n=2 в 998 степени n=2 в 1000 степени n=2 в 2000 степени Такого n не существует
сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
Решение: Пусть по плану фермер должен был вспахивать по х га в день, время его работы должно было быть равным у дней, тогда по по условию х·у = 120 (га). В действительности фермер вспахивал на 5 га в день больше, т.е. (х + 5) га, а дней затратил на выполнение всего задания (у - 2). Запишем, что (х + 5)·(у - 2) = 120. Составим и решим систему уравнений: При решении первого уравнения системы получим два корня, положительным является только один: у = 8. То есть 8 дней - время работы фермера по плану. 8 - 2 = 6 (дней) - затратил на работу фермер в действительности. ответ: 6 дней. Проверим полученный результат: При норме !20: 8 = 15 (га в день) поле фермер собирался вспахать за 8 дней (15·8 = 120 га) На самом деле он вспахивал 15 + 5 = 20 (га в день), потому выполнил работу за 8 - 2 = 6 (дней). (20·6 = 120 га). Верно.
Задачу можно решить и другим составляя дробно-рациональное уравнение.
сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
ответ 8 см, 8√3см