1. Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ
a) x² - 4x + 1_<0
b) 2x²-x+4>0
c) -x² + 3x - 8 _>0
d) -x² + 16 _>0
1. Неравенство не имеет решений
2. Решением неравенства является вся числовая прямая
3. Решением неравенства является одна точка
4. Решением неравенства является закрытый промежуток
5. Решением неравенства является открытый промежуток
6. Решением неравенства является объединение двух промежутков
Объяснение:
Так как плоскость KCNM перпендикулярна к ребру АЕ, то стороны МК и МN, а также диагональ СМ сечения KCNM перпендикулярны к АЕ. Так как диагональ СМ лежит в плоскости равнобедренного треугольника AЕС, то она пересекает прямую EO, являющуюся высотой этого треугольника. С другой стороны, диагональ KN, лежащая в плоскости треугольника BED (и, как сейчас будет доказано, параллельная основанию BD этого треугольника), тоже пересекает прямую ЕО, являющуюся высотой треугольника BED. А так как плоскость KCNM имеет с прямой ОЕ только одну общую точку О1, то в этой точке диагонали KN и МС пересекаются друг с другом.
Плоскость KCNM перпендикулярна к ребру АЕ; потому углы ЕМК и EMN - прямые. Прямоугольные треугольники ЕМК и EMN равны (доказать!); следовательно, MK=MN и EK=ЕN. Из последнего равенства вытекает, что KN||BD и что KО1 = О1N. Следовательно, диагонали МС и KN взаимно перпендикулярны и, значит, Scеч. = 1/2МС • KN.
Диагональ МС находим из прямоугольного треугольника АМС, где
∠ CAM = φ и AC = a√2 . Получаем МС = a√2 sin φ.
Диагональ KN находим из равнобедренного треугольника KEN, где ∠ EKN = φ. Имеем КN = 2 • О1E • ctg φ, где О1E = ОЕ - ОО1 . Отрезок ОЕ определяется из треугольника АОЕ (или ВОЕ); находим . Отрезок же OO1 определяется из треугольника ОСО1 , где ∠ OCO1 = 90°- ^MAС = 90° - φ.