Для начала найдём частные производные 1-ого порядка. Всего их 3(т.к. 3 переменные).
Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру: Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.
Теперь частные производные второго порядка. Рассмотрим производную по х. Во второй раз мы может взять её опять же по 3 переменным.
Теперь рассматриваем производную по у. Её 2-уй производную берём снова по 3-ём переменным.
Заметим что: Такие равенства выполняются и для других смешанных производный, то есть:
И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым:
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909
999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10
c-b=1 ⇒
a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 3.
a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=6n максимально возможное 30d+b=14 Подбираем максимальное: а=9 d=8 b=14-8=6 c=7 9678-8769=909
Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру:
Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.
Теперь частные производные второго порядка.
Рассмотрим производную по х. Во второй раз мы может взять её опять же по 3 переменным.
Теперь рассматриваем производную по у. Её 2-уй производную берём снова по 3-ём переменным.
Заметим что:
Такие равенства выполняются и для других смешанных производный, то есть:
И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
Ну вот и всё. Будут вопросы - спрашивайте.