Объяснение:
Вираз {\displaystyle 0^{0}}{\displaystyle 0^{0}} (нуль в нульовому степені) багато підручників вважають невизначеним і позбавленим сенсу[1]. Пов'язано це з тим, що функція двох змінних {\displaystyle f(x,y)=x^{y}}{\displaystyle f(x,y)=x^{y}} в точці {\displaystyle (0,0)}{\displaystyle (0,0)} має неусувний розрив. Справді, уздовж додатного напрямку осі {\displaystyle X,}{\displaystyle X,} де {\displaystyle y=0,}{\displaystyle y=0,} вона дорівнює одиниці, а вздовж додатного напрямку осі {\displaystyle Y,}{\displaystyle Y,} де {\displaystyle x=0,}{\displaystyle x=0,} вона дорівнює нулю. Тому ніяка домовленість про значення {\displaystyle 0^{0}}{\displaystyle 0^{0}} не може дати неперервну в нулі функцію.
Деякі автори пропонують домовитись про те, що цей вираз дорівнює 1.
Имеется в виду, что a, b, c - какие-то функции от x. Обычный сводящийся к рассмотрению нескольких случаев раскрытия модулей, хорош, если легко ищутся промежутки, на которых эти функции имеют определенный знак. Если же это не так, можно применить метод, который можно найти в книжке Голубева "Решение сложных и нестандартных задач по математике" (этот метод там не обосновывается, поскольку любой, берущийся за решение сложных и нестандартных задач, должен такое обоснование придумывать самостоятельно). Постараюсь это обоснование привести здесь. Основой метода служат следующие равносильности:
Доказывать здесь их не хотелось бы. Скажем, в книжке Мерзляка, Полонского и Якира "Алгебраический тренажер" они используются без доказательства. Если эти доказательства кому-то нужны, помещайте такое задание, и я обязательно их приведу. Кстати, для тех, кто забыл, напомню, что фигурной скобкой обозначается система, а квадратной - совокупность.
Переходим к неравенству
Перенеся |b| направо, получаем неравенство первого типа, поэтому оно равносильно системе
Рассуждая аналогично, получаем, что
Наконец, если мы имеем модуль и в правой части, то в случае неравенства |a|+|b|<|c| мы получаем систему
причем каждое из этих неравенств равносильно совокупности двух уравнений, полученных разными раскрытиями модуля c.
Аналогично решается неравенство |a|+|b|>|c|, только здесь получится не система четырех совокупностей, а совокупность четырех систем.