Первая парабола У=-Х²+4 имеет вершину на оси У (при Х=0 У=4) и ветви ее направлены вниз, т.к. перед Х² минус. Она симметрична оси У.
Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.
Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.
Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек) и видим, что пересечение двух парабол - именно в точках с координатами (0;4) и (2;0).
Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.
Принцеп такой же подумай. Преобразовываем ур-е к типу y=kx+b, где k-это угловой коэфициент. В данном случае: 1) 3х-y+6=0 -y= -6-3x y=3x+6, здесь k1=3
2) x-y+4=0 -y= -x-4 y=x+4, здесь k2=1
Воспользуемся формулой tg(альфа) =k2-k1/1+k1k2
У нас k1=3, k2=1
Подставляем: tg(альфа) =(1-3)/1+(3*1)= -2/4=-1/2=1/2 всякий раз, как в знаменателе появляется нуль, угол θ надо считать равным ±90° (как поворот на +90°, так и поворот на -90° совмещает любую из перпендикулярных прямых с другой) .
По таблицам тригонометрических функций находим, что альфа=26° 33´ 54˝ градуса.
Объяснение:
6икс в шестой степени. 6х6