М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Аанимешка
Аанимешка
24.02.2020 12:38 •  Алгебра

Найти значения выражения
алгебра сор 7 класс​


Найти значения выражения алгебра сор 7 класс​

👇
Открыть все ответы
Ответ:
shahmina123
shahmina123
24.02.2020

ответ:: S6 = 10,2

Объяснение:

1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле

Sn = (a1 + an) : 2 * n.

2. Известна формула для энного члена арифметической прогрессии

  аn = a1 + d *(n - 1).

3. Пользуясь этой формулой вычислим разность прогрессии d.

  a4 = a1 + d * 3;

 1,8 = 1,2 + 3 d;

 d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.

4. Теперь найдем а6.

  а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.

5. Отвечаем на во задачи

 S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.

4,4(33 оценок)
Ответ:
ksyushaivleva
ksyushaivleva
24.02.2020
Решение:

Большое количество задач такого типа решаются при формулы Ньютона-Лейбница:

\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Поэтому, во-первых, нужно найти a и b - абсциссы точек пересечения графиков функций. Для этого нужно решить несложное уравнение:

-x^3 = -x\\\\x^3-x=0\\\\x \cdot (x^2-1)=0\\\\\Rightarrow \; x_1 = -1, \; x_2 = 0, \; x_3 = 1

А так как есть целых три точки пересечения, то придется считать два интеграла: первый - от -1 до 0 (как результат приравнивания функций: f(x) = x^3-x), а второй - от 0 до 1 (здесь уже f(x)=x-x^3):

\displaystyle \int\limits^0_{-1} {\Big (x^3-x \Big) } \, dx + \int\limits^1_{0} {\Big (x-x^3 \Big) } \, dx = \bigg ( \frac{x^4}{4} - \frac{x^2}{2} \bigg ) \Big | ^0_{-1} + \bigg ( \frac{x^2}{2} - \frac{x^4}{4} \bigg ) \Big | ^1_{0} =\\\\= \bigg ( \Big (\frac{0}{4} - \frac{0}{2} \Big ) - \Big (\frac{1}{4} - \frac{1}{2} \Big ) \bigg ) + \bigg ( \Big (\frac{1}{2} - \frac{1}{4} \Big) - \Big (\frac{0}{4} - \frac{0}{2} \Big ) \bigg ) = 2 \cdot \bigg (\frac{1}{2} - \frac{1}{4} \bigg ) = \frac{1}{2}

Значит, площадь искомой фигуры (состоящей из нескольких других фигур) равна 1/2 или 0.5 (каких-то квадратных единиц измерения), если перевести в десятичную дробь.

ответ: 0.5 .
Найти площадь фигуры, ограниченную линиями y=-x^3, y=-x
4,8(31 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ