Задумано простое трёхзначное число, все цифры которого различны. На какую цифру оно оканчивается, если его последняя цифра равна сумме первых двух?
РЕШЕНИЕ: Всего возможно 10 вариантов: 0123456789.
Четные цифры убираем, иначе число четное. Остаются варианты 13579.
Цифру 5 убираем, иначе число делится на 5. Остаются варианты 1379.
1 убираем, так как 1 нельзя представить в виде суммы двух других цифр. Остаются варианты 379.
Если последняя цифра 3 или 9, то число будет делиться на 3, так как и сумма первых двух цифр в этом случае тоже делится на 3. Число не простое. Тоже не подходит. Остается вариант 7.
Таким образом, второй автомобиль едет с достаточно странной скоростью 8 км/ч и затрачивает на преодоление 720 км: t₂ = S/v₂ = 720:8 = 90 (ч) Первый автомобиль едет тоже не быстро - 18 км/ч и затрачивает на преодоление 720 км: t₁ = S/v₁ = 720:18 = 40 (ч) То есть: t₁ = t₂ - 50 = 90 - 50 = 40 (ч)
Представить себе пробег с такими "космическими" скоростями достаточно сложно даже для велосипедистов..))
Задание № 2:
Задумано простое трёхзначное число, все цифры которого различны. На какую цифру оно оканчивается, если его последняя цифра равна сумме первых двух?
РЕШЕНИЕ: Всего возможно 10 вариантов: 0123456789.
Четные цифры убираем, иначе число четное. Остаются варианты 13579.
Цифру 5 убираем, иначе число делится на 5. Остаются варианты 1379.
1 убираем, так как 1 нельзя представить в виде суммы двух других цифр. Остаются варианты 379.
Если последняя цифра 3 или 9, то число будет делиться на 3, так как и сумма первых двух цифр в этом случае тоже делится на 3. Число не простое. Тоже не подходит. Остается вариант 7.
ОТВЕТ: 7