Ax+By+C = 0, где A, B, C - это константы, (A и B одновременно не равны нулю) Это общее уравнение прямой на координатной плоскости XOY. Показать (или доказать) это можно разными Так вот: 6x+3y+18 = 0, это уравнение прямой. Чтобы построить эту прямую на координатной плоскости достаточно найти две различные точки, принадлежащие этой прямой. Найдем какие-либо две точки (два частных решения этого уравнения. Например: положим x_1=0, подставим это в уравнение, получим 3y+18 = 0, <=> y = -18/3 = -6. Первая точка это x_1=0, и y_1=-6. Аналогично находим вторую точку прямой: положим y_2=0, подставим это значение в уравнение прямой, получим 6x+18=0, <=> x=-18/6 = -3. Вторая точка у нас имеет координаты x_2=-3 и y_2 = 0. Теперь следует отметить эти точки на координатной плоскости XOY (на графике), затем взять линейку и с ручки или карандаша провести через эти точки прямую линию. Это и будет график данной в условии прямой.
Объяснение:
-3x+y=2 а=3 в=2
у=3х+2 Коэффициент равен 3. Коэффициент а ,свободный член в
а) 3x-y=-2 3х+2=у а=3 в=2 совпадают
б) 3x+y=2 у=-3х+2 а= -3 в=2 пересекаются
в) y=3x а=3 в=0 параллельны
г) -3x+y=-2 у=3х-2 а=3 в=-2 параллельны
у=3х+2 у=-3х+2
3х+2= -3х+2
6х=0
х=0 у=3*0+2=2
у= 3х+2 у= -3х+2 эти прямые пересекаются в точке (0;2)