1a) строим график функции это парабола с центром в точке (2,5; -0,25) и ветвями вверх она пересекает ось Ох в точках 2 и 3 (см. рисунок 1) ответ: х ∈(-∞;2) U (3; +∞) 1б) это парабола с центром в точке (0; 2) и ветвями вверх (см. рисунок 2) она вся лежит выше оси Ох, кроме х=2, в этой точке достигается равенство, но т.к. неравенство строгое, из ответа эту точку "выкалываем" ответ: х∈(-∞; 2) U (2; +∞) 2) выкалываем на числовой оси точки, которые обращают левую часть неравенства в ноль. Х1=-3; Х2=5; Х3=8. Расставляем знаки на получившихся промежутках (см. рисунок 3). Т.к. в неравенстве знак "меньше", выбираем промежутки с "минусом". ответ: х ∈ (-3; 5) U (5; 8)
F(x) = 1,3x - 3,9 1) выясним сначала при каких значениях аргумента f(x)=0, т.е. 1,3x - 3,9 = 0 1,3x = 3,9 | : 1,3 x = 32) при каких значениях аргумента f(x) < 0 ? 1,3x - 3,9 < 0 x < 3 3) при каких значениях аргумента f(x) > 0 ? 1,3x - 3,9 > 0 x > 3 т.к. угловой коэффициент (это коэффициент при х) данной линейной функции положителен , значит функция возрастающая. ответ: f(x)=0 при x = 3; f(x) < 0 при x < 3; f(x) > 0 при x > 3; функция возрастающая.
строим график функции
это парабола с центром в точке (2,5; -0,25) и ветвями вверх
она пересекает ось Ох в точках 2 и 3 (см. рисунок 1)
ответ: х ∈(-∞;2) U (3; +∞)
1б)
это парабола с центром в точке (0; 2) и ветвями вверх (см. рисунок 2)
она вся лежит выше оси Ох, кроме х=2, в этой точке достигается равенство, но т.к. неравенство строгое, из ответа эту точку "выкалываем"
ответ: х∈(-∞; 2) U (2; +∞)
2) выкалываем на числовой оси точки, которые обращают левую часть неравенства в ноль. Х1=-3; Х2=5; Х3=8. Расставляем знаки на получившихся промежутках (см. рисунок 3). Т.к. в неравенстве знак "меньше", выбираем промежутки с "минусом".
ответ: х ∈ (-3; 5) U (5; 8)