Рассмотрим функции и g(x) = a - прямая, параллельная оси Ох План построения графика f(x) 1) Строим обычную квадратичную функцию для построения графика f(x) достаточно найти координату вершины параболы - ось Ох
(1;-4) - координаты вершины параболы
Нижнюю отрицательную часть графика отобразим относительно оси Ох в положительную часть и получаем график
Исследование количеств решений уравнения: 1) При а ∈ (4;+∞)U{0} уравнение имеет 2 корня 2) При a=4 уравнение имеет 3 корня 3) При a ∈ (0;4) уравнение имеет 4 корня 4) При a ∈ (-∞;0) уравнение корней не имеет
А) Тут надо приравнять левую часть неравенства к нулю и решить как обычное квадратное уравнение, то бишь найти корни при дискриминанта: D= 49 - 4*(-9)*2 = 49+72 = 121 (т.е. 11^2) Находим сами корни: х1 = (7+11):4 = х2 = (7-11):4 = -1 Далее необходимо отметить эти точки на координатном луче (и они выколоты, потому что знак неравенства строго "меньше") Они делят этот луч на три промежутка, два крайних из которых имеют знак "+". А тот, что в середине, под знаком "-". Так как неравенство МЕНЬШЕ нуля, выбираем промежуток в середине, множество чисел которого и является решением. То есть ответ будет выглядеть так: х (знак принадлежности, в дальнейшем будем обозначать его @) (-1 ; 4,5) Едем дальше. Б) Ну тут вообще просто)) Корнем 49 является что? Правильно, "+ -7". Тут даже и решать-то нечего: х @ ( - %(бесконечность) ; -7)U(7 ; + %) В) Здесь алгоритм тот же, что и первом примере. Разве что на координатном луче надо выбрать крайние промежутки, потому как в неравенстве стоит знак "больше") То есть: х @ ( - % ; х1) U (х2 ; + %). На всякий случай:
g(x) = a - прямая, параллельная оси Ох
План построения графика f(x)
1) Строим обычную квадратичную функцию
для построения графика f(x) достаточно найти координату вершины параболы
- ось Ох
(1;-4) - координаты вершины параболы
Нижнюю отрицательную часть графика отобразим относительно оси Ох в положительную часть и получаем график
Исследование количеств решений уравнения:
1) При а ∈ (4;+∞)U{0} уравнение имеет 2 корня
2) При a=4 уравнение имеет 3 корня
3) При a ∈ (0;4) уравнение имеет 4 корня
4) При a ∈ (-∞;0) уравнение корней не имеет