пусть а, a+d, a+2d - три числа, образующие арифмитическую прогрессию, тогда
a+8, a+d, a+2d - три числа образующие геометричесскую прогрессию
отсюда и из условия имеем
a+8+a+d+a+2d=26 (условие задачи - сумма членов геометричесской прогрессии равна 26)
3a+3d=18
a+d=6 (*)
d=6-a
(a+d)^2=(a+8)(a+2d) (использовано свойство, если дано три последовательные члены геометрической прогрессии, то квадрат среднего равен произведению первого и третьего члена)
6^2=(a+8)(12-a) (используем (*) )
36=12a+96-a^2-8a
a^2-4a-60=0
D=256=16^2
a1=(4+16)/2=10
a2=(4-16)=-6
b[1]=a=10
b[2=]a+d=6
q=b[2]/b[1]=6/10=0.6
или
b[1]=a=-6
b[2]=a+d=6
q=b[2]/b[1]=6/(-6)=-1
Как-то кривенько все получается, либо приблизительно, либо с корнями...
Ну смотрите сами.
1. А+В = 5
А*В = -2
Выражаем А через В
А = (5-В) и подставляем во второе выражение
(5-В)* В = -2, раскрываем скобки и получаем кв. уравнение
В в кв - 5В - 2= 0, по формуле находим корни В1 В2
В1 = ( 5- кв корень(25+8)):2 = 2.5 - кв корень(33)/2
В2 = ( 5 + кв корень(25+8))/2 = 2.5 + кв корень(33)/2
Потом находим А1 и А2
А1 = 5 - (2.5 - кв корень(33)/2) = 2.5 + кв корень (33)/2
А2 = 5 - (2.5 + кв корень(33)/ 2) = 2,5 - кв корень(33)/2
Теперь ищем (А-В) в кв (А1-В1) и (А2-В2)
1. ((2.5+кв к(33)/2)-(2.5-кв.к(33)/2)в кв =( кв к(33))в кв = 33
2. ((2.5-кв к(33)/2)- (2,5+кв к(33)/2)в кв = (-кв к(33))в кв = 33
Проверьте, может где-то перемудрила, но основная мысль такова.
Удачи!