Пусть а деревьев в саду А, b деревьев в саду В. Составим систему уравнений по условию задачи.
{15а + 20b = 550
{1,2 · 15a + 0,95 · 20b = 550 + 85
- - - - - - -
{15a + 20b = 550
{18a + 19b = 635
- - - - - - -
Вычтем из второго уравнения системы первое
3а - b = 85
b = 3a - 85
- - - - - - -
Подставим значение b в любое уравнение системы
15а + 20 · (3а - 85) = 550 или 18а + 19 · (3а - 85) = 635
15а + 60а - 1700 = 550 18а + 57а - 1615 = 635
75а = 550 + 1700 75а = 635 + 1615
75а = 2250 75а = 2250
а = 2250 : 75 а = 2250 : 75
а = 30 а = 30
- - - - - - -
b = 3 · 30 - 85
b = 90 - 85
b = 5
ответ: 30 деревьев в саду А и 5 деревьев в саду В.
24 (км/час) собственная скорость яхты.
Объяснение:
Расстояние между пристанями A и B равно 143 км. Из A в B по течению реки отправился плот, а через 3 часа вслед за ним отправилась яхта, которая, прибыв в пункт B,тотчас повернула обратно и возвратилась в A. К этому времени плот км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. ответ дайте в км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость яхты.
х+2 - скорость яхты по течению.
х-2 - скорость яхты против течения.
143/(х+2) - время яхты по течению.
143/(х-2) - время яхты против течения.
Яхта была в пути (30:2)-3=12 (часов), уравнение:
143/(х+2)+143/(х-2)=12
Общий знаменатель (х+2)(х-2), надписываем над числителями дополнительные множители, избавляемся от дроби:
143*(х-2)+143*(х+2)=12*(х+2)(х-2)
143х-286+143х+286=12х²-48
-12х²+286х+48=0/-1
12х²-286х-48=0, квадратное уравнение, ищем корни:
D=b²-4ac = 81796+2304=84100 √D= 290
х₁=(-b-√D)/2a
х₁=(286-290)/24
х₁= -4/24 -1/6, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(286+290)/24
х₂=576/24
х₂=24 (км/час) собственная скорость яхты.
Проверка:
143/26 + 143/22=5,5+6,5=12 (часов), верно.