у=(х-5)²·(х-3)+ 10
y' = 2·(х-5)·(х-3) + (х-5)²
ищем минимум
2·(х-5)·(х-3) + (х-5)² = 0
(х-5)·(2х - 6 + х - 5) = 0
(х-5)·(3х - 11) = 0
х₁ = 5, х₂ = 11/3 = 3 2/3
Исследуем знак производной в интервалах
+ - +
11/3 5
У'(3) = -2·(-2) = 4 > 0 y возрастает
У'(4) = -1·1 = -1 < 0 y убывает
У'(6) = 1·7 = 7 > 0 y возрастает
Точка минимума х₁ = 5
У min = у(5) = (5-5)²·(5-3)+ 10 = 0·2 + 10 = 10
На промежутке от 4 до 8 функция ведёт себя так:убывает при х∈[4 ; 5] и возрастает при ∈[5 ; 8].
Следовательно, наименьшее значение функции совпадает с её минимальным значением
ответ: у наим = 10
Многочленом стандартного вида является многочлен, представленный в виде суммы одночленов. Воспользуемся формулой квадрата разности и правилами умножения многочлена на многочлен
Раскроем скобки, приведём подобные:
(n-7)^2*(7+n)=(n^2-14n+49)(7+n)=7n^2-98n+343+n^3-14n^2+49n=n^3-7n^2-49n+343
Можно иначе: (n-7)^2*(7+n)=(n-7)(n-7)(n+7)=(n-7)(n^2-49)=n^3-49n-7n^2+343=n^3-7n^2-49n+343
Здесь мы воспользовались тем, что a^2=a*a (т.е. расписали (n-7)^2=(n-7)(n-7)), и формулой разности квадратов: (n-7)(n+7)=n^2-49