Уравнение касательной y = f ’(x0) · (x − x0) + f (x0)
Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.
Значение функции в точке х = 2:
f(2) = 2-3*2² = 2-12 = -10.
Производная функции равна f'(x) = 1-6x.
В точке Хо = 2 её значение f'(2) = 1-6*2 = -11.
Уравнение касательной: у = -11(х-2)-10 или, раскрыв скобки,
у = -11х+22-10 = -11х+12.
B2) Даны уравнения функции y=0,5x^4-x и касательной к её графику
y=-(3/4)x-(3/32).
2tg^2(x) + tgx - 3 = 0
D = 1 + 24 = 25
tgx = -1.5, x = -arctg(1.5) + πk, k∈Z
tgx = 1, x = π/4 + πk, k∈Z
Найдем корни x1, x2, которые принадлежат интервалу (0;π)
0 < -arctg(1.5) + πk < π
arctg(1.5)/π < k < 1 + (arctg(1.5)/π), k∈Z
k = 1, x1 = -arctg(1.5) + π
0 < π/4 + πk < π
-0.25 < k < 0.75, k∈Z
k = 0, x2 = π/4
Найдем теперь 5tg(x1+x2) = 5tg(π/4 + π - arctg(1.5)) = 5tg(π/4 - arctg(1.5)) = 5*(tg(π/4) -tg(arctg(1.5))/(1 + tg(π/4)*tg(arctg(1.5))) = 5*(1 - 1.5)/(1 + 1.5) = -5*0.5/2.5 = -1