Найдём 1 производную функции y'=3*x²-6 и приравняем её к нулю 3*х²=6⇒х1=√2 (min, производная меняет знак с - на + при возрастании х) и х2=-√2 (min, производная меняет знак с + на - при возрастании х). Левее х2 и правее х1 производная неограниченно возрастает, поэтому к точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает.
ответ: точки экстремума х1 и х2. К точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает.
1) sin 3x - sin 5x > 0 По формуле разности синусов 2sin(-x)*cos(4x) > 0 -2sin x*cos(4x) > 0 Делим на -2, при этом знак неравенства меняется. sin x*cos(4x) < 0 Два варианта. Множители должны иметь разные знаки. a) { sin x < 0 { cos(4x) > 0 Решаем неравенства { x ∈ (-pi+2pi*k; 2pi*k) { 4x ∈ (-pi/2+2pi*k; pi/2+2pi*k); x ∈ (-pi/8+pi/2*k; pi/8+pi/2*k) Решение 2 неравенства я показал на рисунке. Это жирные дуги. Пересечение неравенств - это нижняя часть круга, где sin x < 0 x ∈ (-pi+2pi*k; -7pi/8+2pi*k) U (-5pi/8+2pi*k; -3pi/8+2pi*k) U (-pi/8+2pi*k; 2pi*k)
б) { sin x > 0 { cos(4x) < 0 Решаем неравенства { x ∈ (2pi*k; pi+2pi*k) { 4x ∈ (pi/2+2pi*k; 3pi/2+2pi*k); x ∈ (pi/8+pi/2*k; 3pi/8+pi/2*k) Решение 2 неравенства - это нежирные дуги на том же рисунке. Пересечение неравенств - это верхняя часть круга, где sin x > 0 x ∈ (pi/8+2pi*k; 3pi/8+2pi*k) U (5pi/8+2pi*k; 7pi/8+2pi*k)
ВОТ ОТВЕТ.....................