1) x^2+3.5x-2=0
2x^2+7-4=0
D=49+32=81=9^2
X=-4;0.5
ответ: -4; 0.5
2) x^2-6x+24-4x+1=0
x^2-10x+25=0
D=100-100=0
x=3
ответ: 3
3) 2x^2-7x+9
D=49-72
Пустое множество
4) 7+2(x-4) x+4
2x=1 x=-4
x=0.5 > x=-4
от - бесконечности до 0.5 и от 4 до плюс бесконечности все включительно
5) -0.4x+0.6 6x+1.5
x=-1.5 < x=-0.25
от -1.5 до 0.25 все не включительно
6) -3x-6+2x-2 3x-9+2
-x=8 3x=7
x=8 > x=3.5
от - бесконечности до 3.5 и от 8 до плюс бесконечности все не включительно
д) x+1+2x+2+3x-3 4x+3x-6
6x=0 7x=6
x=0 < x=6/7
от 0 до 6/7 все не включительно
г) x-1/3+7x-7 4x+2
-6x=22/3 x=-0.5
6x=-22/3 < x=-0.5
от (-22/3)/6 до -0.5 все включительно
1б) √0,17 > 0,4.
1в) √2,3 < √2 1/3.
2а) -1; -0,5; √0,2; √0,25; 0,7.
2б) 1/3; √2/9; √0,4; 1,8; √3 1/3.
Объяснение:
1б) √0,17 и 0,4
√0,17 и √0,16
0,17>0,16 , значит √0,17 > √0,16 и √0,17 > 0,4.
1в) √2,3 и √2 1/3
√2 3/10 и √2 1/3
√2 9/30 и √2 10/30
2 9/30 < 2 10/30, значит √2 9/30 < √2 10/30 и √2,3 < √2 1/3.
2а) 0,7; -1; √0,2; -0,5; √0,25
√0,49; -1; √0,2; -0,5; √0,25
т.к. 0,2<0,25<0,49, то √0,2 < √0,25 < √0,49
-1 < -0,5 < √0,2 < √0,25 < √0,49
-1 < -0,5 < √0,2 < √0,25 < 0,7.
ответ: -1; -0,5; √0,2; √0,25; 0,7.
2б) √0,4; 1/3; √2/9; √3 1/3; 1,8
√2/5; √1/9; √2/9; √3 3/9; √3,24
√2/5; √1/9; √2/9; √3 3/9; √3 6/25
√90/225; √25/225; √50/225; √3 75/225;√3 54/225
т.к. 25/225 < 50/225 < 90/225 < 3 54/225 < 3 75/225, то
√25/225 < √50/225 < √90/225 < √3 54/225 < √3 75/225
1/3 < √2/9 < √0,4 < 1,8 < √3 1/3.
ответ: 1/3; √2/9; √0,4; 1,8; √3 1/3.