Рациональные выражения начинают целенаправленно изучаться в 7 классе. Причем в 7 классе познаются основы работы с так называемыми целыми рациональными выражениями, то есть, с рациональными выражениями, которые не содержат деления на выражения с переменными. Для этого последовательно изучаются одночлены и многочлены, а также принципы выполнения действий с ними. Эти все знания в итоге позволяют выполнять преобразование целых выражений. В 8 классе переходят к изучению рациональных выражений, содержащих деление на выражение с переменными, которые называют дробными рациональными выражениями. При этом особое внимание уделяется так называемым рациональным дробям (их также называют алгебраическими дробями), то есть дробям, в числителе и знаменателе которых находятся многочлены. Это в итоге дает возможность выполнять преобразование рациональных дробей. Полученные навыки позволяют перейти к преобразованию рациональных выражений произвольного вида. Это объясняется тем, что любое рациональное выражение можно рассматривать как выражение, составленное из рациональных дробей и целых выражений, соединенных знаками арифметических действий. А работать с целыми выражениями и алгебраическими дробями мы уже умеем.
2cos(π/3 - 3x) + √3 = 0
2cos(π/3 - 3x) = -√3
cos(π/3 - 3x) = -√3/2
• Воспользуемся формулой:
cos(x) = b ( |b|≤ 1, [0; π] )
x = ± arccos(b) + 2πn, n ∈ ℤ
• Получаем:
cos(π/3 - 3x) = -√3/2
π/3 - 3x = ± arccos(-√3/2) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - arccos(-√3/2)) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - 5π/6) + 2πn, n ∈ ℤ
π/3 - 3x = ± π/6 + 2πn, n ∈ ℤ
-3x = ± π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/2 + 2πn, n ∈ ℤ / : (-3)
[ -3x = -π/3 + 2πn, n ∈ ℤ / : (-3)
[ x = π/6 - 2πn/3, n ∈ ℤ
[ x = π/9 - 2πn/3, n ∈ ℤ
ответ: x = π/6 - 2πn/3, n ∈ ℤ ; x = π/9 - 2πn/3, n ∈ ℤ