Ну короче начинаем. Уравнения с параметром решаются методом перебора возможных случаев.
1)Сложность у нас вызывает то, что параметр находится при переменной x², значит, утверждать о том. что это уравнение квадратное, нельзя.
Тогда предполагаем, если t+1 = 0, то уравнение не является квадратным. Отсюда следует, что t = -1
При этом параметре, уравнение является линейным. которое уже по определению имеет один корень.
2)рассмотрю случай, когда t+1 ≠0 Тогда данное уравнение по логике вещей является квадратным. По условию нам нужно. чтобы уравнение имело один корень. А квадратное уравнение имеет один корень, если его дискриминант = 0. Выделя дискриминант из этого уравнения. Выпишу сначала значения коэффициентов:
a = t+1 ; b = t;c = -1
D = b² - 4ac = t² + 4(t+1)
D = 0 t² + 4t+4 = 0 - надо решить квадратное уравнение
По теореме Виета нахожу его корни:
t1 = -2;t2 = -2
Значит, при t = -2 данное уравнение также будет иметь один корень.
3)У нас есть ещё один случай, когда t = 0, так как второй коэффициент его содержит.
Тогда получим уравнение x² - 1 = 0, оно также имеет 2 корня. Нам это значение не подходит по условию. Значит, уравнение с параметром имеет один корень при t = -1; t = -2. Задача решена
ответ: x1 + x2 = -2; x1 * x2 = -3;
Объяснение: За теоремой Виетта. Третий кофициент квадратного уравнения (кофициент c, в данном случае это -3) равен умножению двух кореней уравнения, то есть, умножение первого корня x1, на второй корень x2 дает в ответе значение -3
За той же теоремой Виетта, второй кофициент (кофициент b) квадратного уровнения умноженный на -1 дает нам результат x1 + x2. В данном случае это +2, соответственно ответ выходит -2.
(В теореме Виетта это выглядит, как x1 + x2 = -b, соответственно, нужно изменить знак кофициента b, который находится возле 2го икса, на противоположный, чтобы получить значение x1 + x2. Так и вышла сумма корней)