М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
loshka2256
loshka2256
02.11.2020 13:26 •  Алгебра

Чомк дорівнює сума коренів рівняння x2-6x-4=0? ​

👇
Ответ:
aaannnaaa1
aaannnaaa1
02.11.2020

6

Объяснение:

 По теореме, обратной теореме Виета:

x^2+px+q=0left[\begin{array}{c}x_1+x_2=-px_1 \cdot x_2 = q\end{array}\right

 Тогда сумма корней исходного уравнения равна 6

4,5(81 оценок)
Открыть все ответы
Ответ:
danilnikitin624
danilnikitin624
02.11.2020
Дана функция у = (-1/3)x^3+x^2.
1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет.
2-Выяснить является ли чётной или нечётной.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
 f(-x) = (-1/3)x³ + x²  = (1/3)x³ + x² 
- Нет
 -f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x² 
- Нет, значит, функция не является ни чётной, ни нечётной.
3-определить точки пересечения функции с координатными осями .
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(-1/3)x³+ x² = 0.
-x³ + 3x² = 0.
-x²(x-3) = 0.
Имеем 2 корня: х = 0 и х = 3.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в y = (-1/3)x^3 +x^2.
y = (-1/3)0³+0² = 0. Точка: (0, 0) 
4-найти критические точки функции.
Находим производную и приравниваем её нулю:
y' = -x²+2x = -x(x-2).
Имеем 2 критические точки: х = 0 и х = 2.
5-определить промежутки монотонности 
(возрастания,убывания).
Исследуем поведение производной вблизи критических точек.
х =                -0.5    0    0.5      1.5     2     2.5
y'=-x^2+2x   -1.25    0   0.75    0.75    0   -1.25
Где производная отрицательна - функция убывает, где положительна - функция возрастает.
Возрастает на промежутке
[0, 2]
Убывает на промежутках
(-oo, 0] U [2, oo)
6-определить точки экстремума.
Они уже найдены: это 2 критические точки: х = 0 и х = 2.
Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции.
Минимум функции в точке: x = 0,
Максимум функции в точке: х = 2.
7 -определить максимальное и минимальное значение функции.
Значения функции в экстремальных точках:
х = 2, у = (-1/3)*2³+2² = -8/3 + 4  = 4/3,
х = 0, у = 0.
8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
d2/dx2f(x)=0(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции,
d2/dx2f(x)= -2х + 2 =-2(x−1)=0
Решаем это уравнение
Корни этого ур-ния
x1=1
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 1]
Выпуклая на промежутках
[1, oo)

Иследуйте функцию и постройте график: f (x)=-1/3x^3+x^2
4,7(7 оценок)
Ответ:
86543949776944
86543949776944
02.11.2020

1. С графика квадратичной функции.

x² + 3x - 18 < 0.

Рассмотрим функцию у = х² + 3х - 18. Графиком этой функции является парабола, ветви которой направлены вверх.

Выясним, как расположена эта парабола относительно оси Ох. Для этого решим уравнение х² + 3х - 18 =0:

D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9

х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,

х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.

Значит, парабола пересекает ось Ох в двух точках, абсциссы которых равны -6 и 3.

Покажем схематически, как расположена парабола в координатной плоскости (см. рис.) Из рисунка видно, что функция принимает отрицательные значения, когда х∈(-6; 3). Следовательно, множеством решений неравенства x² + 3x - 18 < 0 является промежуток (-6; 3).

2. Методом интервалов.

Метод интервалов применяется в случае, когда левая часть нервенства имеет многочлена, а правая равна 0. В этом случае находят корни многочлена, располагают их в порядке возрастания, наносят их на числовую ось, а затем справа налево располагают знаки "+" и "-", чередуя их, если корень некратный, и сохраняя знак, если корень кратный.

x² + 3x - 18 < 0

Разложим на множители многочлен x² + 3x - 18, для чего решим квадратное уравнение x² + 3x - 18 = 0:

D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9

х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,

х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.

Значит, x² + 3x - 18 = (х - 3)(х + 6).

Отметим на координатной прямой точки -6 и 3 и укажем знаки многочлена на каждом из полученных интервалов (см. рис.).

Множество решений неравенства: х∈(-6; 3).

ответ:(-6; 3).



Решите неравенство используя график квадратичной функции и метод интервалов: x^2+3x-18< 0
4,5(78 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ