Объём конуса = пhr^2/3 h - высота конуса конуса, r -радиус основания конуса. Однако если изобразить чертёж этой задачи, то получится, что основание конуса лежит на диаметральном сечении шара, и конус находится лишь в одной половинке шара. А тогда высота конуса равна также и радиусу шара. То есть:
V = пhr^2/3 = пr*r^2/3 = пr^3/3.
Таким образом, мы можем написать, что 5,3 = пr^3/3. Или же r = корень з-ей степени из 15,9/п. Теперь мы можем найти объём шара:
V шара = 4пr^3 /3. Как видно выше, То r^3 = корень з-ей степени из 15,9/п в 3-ей степени, что равно 15,9/п.
Тогда:
V шара = 4п * 15,9/3п = 4 * 15,9/ 3 = 21,2
ответ: Объём шара равен 21,2
Понравилось решение - поблагодарите)))
(перед тем, как я отвечу хочу попросить вас подписаться, так я смогу отвечать на ваши вопросы всегда и , оцените это решение! )
«теоремы виета»
примеры:
x2 + 7x + 12 = 0 — это квадратное уравнение;
x2 − 5x + 6 = 0 — тоже ;
2x2 − 6x + 8 = 0 — а вот это нифига не , поскольку коэффициент при x2 равен 2.
~разумеется, любое квадратное уравнение вида ax2 + bx + c = 0 можно сделать — достаточно разделить все коэффициенты на число a. мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.
разделим каждое уравнение на коэффициент при переменной x2. получим:
3x2 − 12x + 18 = 0 ⇒ x2 − 4x + 6 = 0 — разделили все на 3;
−4x2 + 32x + 16 = 0 ⇒ x2 − 8x − 4 = 0 — разделили на −4;
1,5x2 + 7,5x + 3 = 0 ⇒ x2 + 5x + 2 = 0 — разделили на 1,5, все коэффициенты стали целочисленными;
2x2 + 7x − 11 = 0 ⇒ x2 + 3,5x − 5,5 = 0 — разделили на 2. при этом возникли дробные коэффициенты.
надеюсь, я вам !