Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1. а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
Сначала выражаем одну переменную через другую ( x y - переменные): x+2y=6...Выразим переменную x отсюда. Получается, что x = 6 - 2y Дальше подставляем значение x ( то что после знака " = ") во второе уравнение. Получаем 1) 2(6 - 2y) - y = 0 2) 12 - 4y - y = 0 3) -5y = -12 4) y = 12/5 ( 12 делить на 5) Все, значение у мы имеем. Далее, чтобы найти значение x подставляем значение y в любое выражение, содержащие переменную x. Например, самое первое уравнение, откуда мы выражали x ( x = 6 - 2y). Можно подставить y сюда x = 6 - 24/5 = 6/5
Значит, ответы такие y = 12/5 x = 6/5
Проверяем x + 2y = 0 6/5 + 2( 12/5 ) = 6 6 = 6 Да, равенство выполняется, а значит, значения, которые мы нашли для y и x были верны
1,5(x+1)-9=x-1
1,5x+1,5-9-x+1=0
0,5x=6,5
5x=65
x=13