![2)\; \; \int \frac{\sqrt[4]{x}+1}{(\sqrt{x}+4)\cdot \sqrt[4]{x^3}}\, dx=\Big [\; x=t^4\; ,\; dx=4t^3\, dt\; ,\; \sqrt[4]{x}=t\; ,\\\\\sqrt[4]{x^3}=t^3\; ,\; \sqrt{x}=t^2\; \Big ]=\int \frac{(t+1)\cdot 4t^3\, dt}{(t^2+4)\cdot t^3}=4\int \frac{(t+1)dt}{t^2+4}=\\\\=2\int \frac{2t\, dt}{t^2+4}+4\int \frac{dt}{t^2+4}=2\int \frac{d(t^2+4)}{t^2+4}+4\cdot \frac{1}{2}\, arctg\frac{t}{2}=\\\\=2\, ln(t^2+4)+2\, arctg\frac{t}{2}+C=2\cdot ln(\sqrt{x}+4)+2\, arctg\frac{\sqrt[4]{x}}{2}+C](/tpl/images/3178/8844/42bda.png)
![Proverka:\\\\\Big (2\cdot ln(\sqrt{x}+4)+2\, arctg\frac{\sqrt[4]{x}}{2}+C\Big )'=\\\\=\frac{2}{\sqrt{x}+4}\cdot \frac{1}{2\sqrt{x}}+2\cdot \frac{1}{1+\frac{\sqrt{x}}{4}}\cdot \frac{1}{2}\cdot \frac{1}{4}\cdot x^{-\frac{3}{4}}=\frac{1}{\sqrt{x}(\sqrt{x}+4)}+\frac{4}{\sqrt{x}+4}\cdot \frac{1}{4\sqrt[4]{x^3}}=\\\\=\frac{\sqrt[4]{x}+1}{(\sqrt{x}+4)\cdot \sqrt[4]{x^3}}](/tpl/images/3178/8844/57308.png)
Объяснение:
(3-5,8x)-(2,2x+3)=16
3-5,8x-2,2x-3=16
-8x=16
x=-16/8=-2
6x-5(3x+2)=5(x-1)-8
6x-15x-10=5x-5-8
-9x-10=5x-13
5x+9x=13-10
14x=3
x=3/14
(3x+7)/2=(6x+4)/5
5(3x+7)=2(6x+4)
15x+35=12x+8
12x-15x=35-8
-3x=27
x=-27/3=-9
x/4 -(x-3)/5=-1
(5x-4(x-3))/(4*5)=-1
5x-4x+12=-20
x=-20-12=-32
(8x-3)/7 -(3x+1)/10=2
(10(8x-3)-7(3x+1))/(7*10)=2
80x-30-21x-7=70*2
59x-37=140
59x=140+37
x=177/59=3
(15x+27)(-5x-9)=0
15x+27=0
15x=-27
x1=-27/15=-9/5=-1 4/5=-1,8
-5x-9=0
5x+9=0
5x=-9
x2=-9/5=-1,8
ответ: x=-1,8.
|8x-4|-7=13
8x-4=13+7
8x-4=20
8x=20+4
x1=24/8=3
8x-4=-20
8x=-20+4
x2=-16/8=-2