Выигрывает первый. Вначале он называет 6. Если второй называет 2 или 3, то первый после этого назовет 5 (тогда произведение станет 6*2*5=60 или 6*3*5=90) Если второй называет 4, то первый после этого назовет 3 (тогда произведение станет 6*4*3=72). Если второй называет 5,6,7,8,9, то первый после этого назовет 2 (тогда произведение будет от 6*5*2=60 до 6*9*2=108). Теперь, какое бы число от 2 до 9 не назвал второй, произведение будет больше 60*2=120 и меньше 108*9=972, т.е., игра еще не закончена. Тогда следующим ходом первый называет 9, и получает число не меньшее 120*9=1080, т.е. выигрывает.
А) X^4+2X^3-X^2+2X+1=0 Разделим уравнение на х^2: (x^2+1/x^2)+2(x+1/x)-1=0 (x+1/x)^2-2+2(x+1/x)-1=0 (x+1/x)^2+2(x+1/x)-3=0 Делаем замену t=x+1/x t^2+2t-3=0 По т. Виета t1=-3, t2=1 x+1/x=-3, т.е. x^2+3x+1=0, x1=(-3+√5)/2, x2=(-3-√5)/2, x+1/x=1, т.е. x^2-x+1=0, D<0. действительны корней нет ответ: x1=(-3+√5)/2, x2=(-3-√5)/2,
б) (X-1)*X(X+1)(X+2)=24 Перемножим первый множитель и последний, а также второй и третий: (x^2+2x-x-2)(x^2+x)=24 (x^2+x-2)(x^2+x)=24 Замена t=x^2+x-1. Тогда (t-1)(t+1)=24 t^2=25 t1=5 , t2=-5 x^2+x-1=5 x^2+x-6=0 x1=-3, x2=2
x^2+x-1=-5 x^2+x+4=0 D<0 действительных корней нет ответ: x1=-3, x2=2
в) (X+1)(X+2)(X+3)(X+4)=3 Перемножим первый множитель и последний, а также второй и третий: (x^2+4x+x+4)(x^2+2x+3x+6)=3 (x^2+5x+4)(x^2+5x+6)=3 Замена t=x^2+5x+5. Тогда (t-1)(t+1)=3 t^2=4 t1=2 , t2=-2 x^2+5x+5=2 x^2+5x+3=0 x1=(-5+√13)/2, x2=(-5-√13)/2
x^2+5x+5=-2 x^2+5x+7=0 D=25-28<0 действительных корней нет ответ: x1=(-5+√13)/2, x2=(-5-√13)/2
По условию x1 /x2= 2
Сделаем уравнение приведенным
x^2+(3k-1)/ (k^2-5k+3) x+2/(k^2-5k+3) =0
по теореме Виета
p = (3k-1)/ (k^2-5k+3)
x1 + x2 = - p = - (3k-1)/ (k^2-5k+3)
2*x2 +x2 = - (3k-1)/ (k^2-5k+3)
3*x2 = - (3k-1)/ (k^2-5k+3)
X2 = - (3k-1)/ 3(k^2-5k+3) (1)
q = 2/(k^2-5k+3)
x1*x2 = q = 2/(k^2-5k+3) ;
2*x2 *x2 = 2/(k^2-5k+3) ;
X2^2 = 1/(k^2-5k+3) (2)
Подставляем (1) в (2)
( - (3k-1)/ 3)^2 = (k^2-5k+3)
(1-3k)^2 /9 = (k^2-5k+3)
(1-3k)^2 = 9k^2 -45k +27
1 -6k +9k^2 = 9k^2 -45k +27
45k – 6k = 27 -1
39k = 26
K = 26/39 = 2/3
Проверка
Подставим k= 2/3 в исходное уравнение
((2/3)^2-5*(2/3)+3)x^2+(3*(2/3)-1)x+2=0
Преобразуем
X^2 +9x +18 = 0
D = 9^2 -4*1*18 = 9 ; √D = +/- 3
X = 1/2 * ( - 9 +/- 3)
X1 = - 6
X2 = -3
ПРОВЕРКА X1 / X2 = - 6 / - 3 = 2
ОТВЕТ k = 2/3