Дана квадратичная функция h(t)=24t−4t², графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы.Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h).Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше.x₀=t₀=(−b)/2а =−24 /2(-4) = 3 секунды. Время, через которое мяч упадет на землю, равно 2⋅t₀=2⋅3=6 секунд.y₀=h₀= 24⋅3-4⋅3²=72-36=36 метров.
ответ: а) нет
б) да
в) нет
Объяснение:
Так как график функции y=a/x проходит через точку А(-3;3), то её координаты подставим в уравнение функции:
А(-3;3), х=-3,у = 3.
3 = а · ( -3 )
а = 3 : ( -3 )
а = - 1
Значит, функция задана уравнением у = - х.
Проверим, принадлежат ли точки B, C, D графику этой функции. Подсавив координаты проверим истинность равенств.
а) B(-1;9), х = -1, у = 9
9 = - ( - 1)
9 ≠ 1, значит B(-1;9) не принадлежит графику.
б) C(3;-3), х = 3, у = -3
- 3 = - 3, верно, значит C(3;-3) принадлежит графику.
в) D(1;-9), х = 1, у = -9
-9 ≠ - 1, значит D(1;-9) не принадлежит графику.