Дерево возможных вариантов см. на рисунке. Отсюда наглядно виды все решения.
а) Сколько имеется различных освещения коридора, включая случай когда все лампочки не горят. Как видим, каждая лампочка имеет два состояния (горит/не горит). Т.к. лампочек три, то всего вариантов будет 2³ = 8. Все 8 вариантов представлены на рисунке.
б) Сколько имеется различных освещения, если известно что лампочки №1 и №2 горят или не горят одновременно? Когда лампочки №1 и №2 горят, то лампочка №3 либо горит, либо не горит (2 варианта). Точно также, когда лампочки №1 и №2 не горят, то лампочка №3 тоже либо горит, либо не горит (2 варианта). Итого, 4 варианта. Проверяем по рисунку.
в) Сколько имеется различных освещения, если известно что при горящей лампочке №3 лампочка №2 не горит? По рисунку считаем варианты - их 6. Когда лампочка №3 горит, то лампочка №2 не горит (по условию), а у лампочки №1 есть 2 варианта - горит/не горит. Когда лампочка №3 не горит, то вариантов у оставшихся лампочек будет 2² = 4. Вот и получается 6 вариантов.
г) сколько имеется различных освещения коридора когда горит большинство лампочек? Т.е. нам надо сосчитать случаи, когда одновременно горят 2 и более лампочек. По рисунку высчитываем, что есть 4 варианта. Или считаем число сочетаний двух лампочек из трёх, плюс число сочетаний три лампочки из трёх. Итак, 4 варианта.
Х+у=-3 => y=-x-3 - график прямая Чертим систему координат, отмечаем начало - точку О, стрелками обозначаем положительное направление по осям: вправо и вверх, подписываем оси: вправо - ось х, вверх - ось у. Выбираем единичные отрезки по каждой из осей: 1 клетка= 1 ед отр. Переходим к построению графика - прямой. Для её построения требуется две точки, занесем их координаты в таблицу: х= 0 -3 у= -3 0 Отмечаем точки (0; -3) и (-3; 0) в системе координат и проводим через них прямую линию. Подписываем график х+у=-3. Всё!
Назовем красный и белый шары нечерными.
Считаем, что в урне 3 черных и 3 нечерных шара.
Надо найти вероятность, что среди трех вытащенных шаров
будет 1 черный, а 2 нечерных шара.
Решаем комбинаторным .
Р=m/n, где m- количество благоприятных исходов )
вынуть 1 черный и 2 нечерных шара из 6 шаров.
n - количество всех исходов (вытащить 3 любых шара из 6).
m = 3*C32 = 3*3!/(2!*1!) = 3*1*2*3/2= 9 исходов
1 черный шар из трех черных можно 3-мя , и 3-мя
можно выбрать 2 нечерных шара из трех нечерных
(можно посчитать по формуле С32 или выписать конкретно:
БК1 БК2 К1К .
Тогда m=3*3=9
n=C63 = 6!/[3!*(6-3)!] =
1*2*3*4*5*6/(1*2*3*1*2*3) = 20
P=m/n = 9/20=45/100=0,45
ответ: 0,45