=cos^2a-cos^2/sin^2a : sin^2/cos^2-sin^2a=cos^2-cos^2 +cos^2a : sin^2a-sin^2a+sin^2a=cos^2a/sin^2a; просто заменяешь и сокращаешь: ctg^2=cos^2/sin^2 и tg^2a=sin^2/cos^2a
Y=x⁴-8x² 1) Находим область определения функции: D(y)=R Данная функция непрерывна на R 2) Находим производную функции: y`(x)=4x³-16x=4x(x²-4)=4x(x-2)(x+2) 3) Находим критические точки: D(y`)=R y`(x)=0 4x(x-2)(x+2)=0 x=0 или х=2 или х=-2 4) Находим знак производной и характер поведения функции: - + - + -202 ↓ min ↑ max ↓ min ↑
у(х) - убывает на х∈(-∞;-2)U(0;2) у(х) - возрастает на (-2;0)U(2;+∞) х=-2 и х=2 - точки минимума функции х=0 - точка максимума функции -2; 0; 2- точки экстремума функции у(-2)=(-2)⁴-8*(-2)²=16-8*4=16-32=-16 у(2)=2⁴-8*2²=16-8*4=16-32=-16 у(0)=0⁴-8*0²=0-0=0 ответ: Функция монотонно возрастает на (-2;0)U(2:+∞) и монотонно убывает на (-∞;-2)U(0;2), x(min)=(+-)2, y(min)=-16, x(max)=0, y(max)=0
Двузначное число, записанное цифрами a и b это число 10a+b Умножение на 10 даст трехзначное число 100a+10b Это число на 3 меньше, чем (a+b)³ Составляем равенство 100a+10b+3=(a+b)³
Так как a и b - цифры от 0 до 9, но а≠0, иначе не получим двузначного числа. 1≤a≤9 0≤b≤9 Далее решаем методом перебора с ограничением.
Слева число больше 100, значит и справа тоже должно быть больше 100 Значит случаи a=1 b=1 a=1 b=2 a=1 b=3 a=2 b=1 a=2 b=2
a=3 b=1 не подходят, справа получим число меньшее 100
a=1 b=4 100+40+3 ≠(1+4)³ a=1 b=5 100+50+3≠(1+5)³
a=2 b=3 200+30+3≠(2+3)³
Замечаем, что число слева оканчивается 3 Значит проверим кубы чисел и найдем то, которое дает 3 на конце.
Это 343=7³=(3+4)³ Проверим, может ли a=3, b=4 Получим слева 343 и справа 343 Вот и ответ. 34 34·10=340 340+3=343=(3+4)³
просто заменяешь и сокращаешь: ctg^2=cos^2/sin^2 и tg^2a=sin^2/cos^2a