Объяснение:
|x -1| + |x +3| ≤ 4
Решим это неравенство методом интервалов.
Найдем нули подмодульных выражений:
х - 1 =0 → х = 1
х + 3 = 0 → х = - 3
Эти значения разбивают числовую ось на три интервала:
х ∈ (-∞; - 3] ; (-3; 1]; (1; + ∞)
Решим заданное неравенство на каждом из этих промежутков.
1) 1) x∈ (-∞; - 3], при этом неравенство примет вид:
- (х - 1) - (х + 3) ≤ 4
-х + 1 - х - 3 ≤ 4
-2х ≤ 6
х ≥ - 3
Пересекая найденное решение x∈ [- 3; +∞) c рассматриваемым интервалом x∈ (-∞; - 3] , получаем решение x = - 3
2) х ∈ (-3; 1]
- (х - 1) + х + 3 ≤ 4
0*х ≤ 4 → х - любое число. Учитывая интервал, х х ∈ (-3; 1]
3) х ∈ (1; + ∞)
х - 1 + х + 3 ≤ 4
2х ≤ 2
х ≤ 1 → х ∈ (- ∞; 1]
Для получения окончательного ответа объединим полученные решения:
x ∈ [- 3] ∪ (-3; 1] ∪ (- ∞; 1]
ответ: х ∈ [-3; 1]
1.
а)
х²/(х²-у²) * (х-у)/х = х²/(х-у)(х+у) * (х-у)/х = х/(х+у),
б)
а/(3а+3в) : а²/(а²-в²) = а/(3*(а+в)) : а²/(а-в)(а+в) =
= а/(3*(а+в)) * (а-в)(а+в)/а² = (а-в)/3а,
в)
(-2с³/у)⁵ = -32с¹⁵/у⁵
г)
х/у² * 4ху = 4х²/у
2.
( у/(у-х) - (у-х)/у ) * (у-х)/х =
= ( у² - (у-х)²) / (у-х)у ) * (у-х)/х =
= ( у²-у²+2ху-х² ) / (у-х)у ) * (у-х)/х =
= х(2у-х) / (у-х)у ) * (у-х)/х = (2у-х) / у,
3.
(2х-4)/(х²+12х+36) : (8х-16)/(х²-36) =
= 2*(х-2)/(х+6)² : 8*(х-2)/(х-6)(х+6) =
= 2*(х-2)/(х+6)² : (х-6)(х+6)/8*(х-2) =
= (х-6) / 2*(х+6),
при х = 1,5:
(1,5-6) / 2*(1,5+6) = -4,5 / (2*7,5) = -4,5 / 15 = -3/10 (или -0,3)
4.
( а-8 + 32а/(а-8) ) * ( 8+а - 32а/(8+а) ) =
= [ ( (а-8)²+32а )/(а - 8) ] * [ ( (8+а)²-32а)/(8+а) ] =
= (а²-16а+64+32а)/(а-8) * (64+16а+а²-32а)/(8+а) =
= (а²+16а+64)/(а-8) * (а²-16а+64)/(8+а) =
= (а+8)²/(а-8) * (а-8)²/(8+а) =
= (а + 8)(а - 8) = а² - 64
рукописный вариант:
⇅⇅⇅⇅
6х²+9х+10=0
D=b²-4ac=9²-4*6*10=81-240=-159
D = -159 < 0, значит корней не имеет
ответ: Г)
(вроде Г обозначает, что корней нет, я просто украинский не знаю...)